Contents

1.	Homework 1 (Due: Sep 21)	2
2.	Homework 2 (Due: Oct 5)	4
3.	Homework 3 (Due: Oct 19)	6
4.	Homework 4 (Due: Nov 9)	8

1. Homework 1 (Due: Sep 21)

Problem 1.1. Let \mathcal{L} be a positive-definite linear functional with monic OPS $\{P_n(x)\}_{n\geq 0}$. Prove the following extremal property: for any monic real polynomial $\pi(x) \neq P_n(x)$ of degree n,

$$\mathcal{L}(P_n(x)^2) < \mathcal{L}(\pi(x)^2)$$

Solution. Let $\pi(x) = \sum_{k=0}^{n} a_k P_k(x)$. Since both $\pi(x)$ and $P_n(x)$ are monic, we have $a_n = 1$ [3 points]. Then

$$\mathcal{L}(\pi(x)^2) = \sum_{k=0}^n a_k^2 \mathcal{L}(P_k(x)^2) \quad [\mathbf{4 \ points}]$$

$$\geq a_n^2 \mathcal{L}(P_n(x)^2) = \mathcal{L}(P_n(x)^2) \quad [\mathbf{3 \ points}].$$

Problem 1.2. Let \mathcal{L} be a linear functional such that $\Delta_n \neq 0$ for all $n \geq 0$. Prove that if $\pi(x)$ is a polynomial such that $\mathcal{L}(x^k \pi(x)) = 0$ for all $k \geq 0$, then $\pi(x) = 0$.

Solution. Since $\Delta_n \neq 0$, there is a monic OPS $\{P_n(x)\}_{n\geq 0}$ for \mathcal{L} [3 points]. Let $\pi(x) = \sum_{k=0}^n a_k P_k(x)$. Since $\mathcal{L}(x^k \pi(x)) = 0$ for all $k \geq 0$, we have $\mathcal{L}(p(x)\pi(x)) = 0$ for any polynomial p(x) [3 points]. Then, for each $0 \leq k \leq n$, we have $0 = \mathcal{L}(P_k(x)\pi(x)) = a_k \mathcal{L}(P_k(x)^2)$ [2 points]. Since $\mathcal{L}(P_k(x)^2) \neq 0$, we get $a_k = 0$ for all $0 \leq k \leq n$ [2 points]. Hence $\pi(x) = 0$.

A common mistake: It is not true in general that $\mathcal{L}(x^k P_n(x)) = 0$ for $k \neq n$. We can only say that $\mathcal{L}(x^k P_n(x)) = 0$ for k < n.

Problem 1.3. The Tchebyshev polynomials of the second kind $U_n(x)$ are defined by

$$U_n(x) = \frac{\sin(n+1)\theta}{\sin\theta}, \qquad x = \cos\theta, \qquad n \ge 0.$$

- (1) Prove that $U_n(x)$ is a polynomial of degree n.
- (2) Prove that

$$U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x), \qquad n \ge 0,$$

where $U_{-1}(x) = 0$ and $U_0(x) = 1$.

(3) Prove that

$$\int_{-1}^{1} U_m(x) U_n(x) (1-x^2)^{1/2} dx = \frac{\pi}{2} \delta_{m,n}$$

(4) Find the 3-term recurrence for the normalized Tchebyshev polynomials of the second kind. More precisely, find the numbers b_n and λ_n such that

$$\hat{U}_{n+1}(x) = (x - b_n)\hat{U}_n(x) - \lambda_n \hat{U}_{n-1}(x), \qquad n \ge 0,$$

where $\hat{U}_n(x)$ is the monic polynomial that is a scalar multiple of $U_n(x)$.

Solution. (1) This follows from (2) [2 points].

(2) By the addition rule for the sine function,

$$\sin(n+1)\theta = \sin n\theta \cos \theta + \cos n\theta \sin \theta,$$

$$\sin(n-1)\theta = \sin n\theta \cos \theta - \cos n\theta \sin \theta.$$

Adding the two equations and dividing both sides by $\sin \theta$, we get

$$U_n(x) + U_{n-2}(x) = 2xU_{n-1}(x), \quad n \ge 1$$
 [2 points]

This is equivalent to the recurrence in the problem.

(3) By the change of variables $x = \cos \theta$, $0 \le \theta \le \pi$, with $dx = -\sin \theta d\theta = -\sqrt{1 - x^2} d\theta$,

$$\int_{-1}^{1} U_m(x)U_n(x)(1-x^2)^{1/2}dx$$

= $\int_{0}^{\pi} \sin(m+1)\theta \sin(n+1)\theta d\theta$ [2 points]
= $\frac{1}{2} \int_{0}^{\pi} (\cos(m-n)\theta + \cos(m+n)\theta) d\theta$ [2 points]
= $\frac{\pi}{2} \delta_{m,n}$.

(4) Since deg $U_n(x) = 2^n$ for all $n \ge 0$, we have $\hat{U}_n(x) = 2^{-n}U_n(x)$. Dividing both sides of the recurrence in (2) by 2^{n+1} , we obtain $b_n = 0$ and $\lambda_n = 1/4$ [2 points].

Problem 1.4. Let $\{P_n(x)\}_{n\geq 0}$ be the monic OPS for a linear functional \mathcal{L} with three-term recurrence

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x), \qquad n \ge 0.$$

(1) Prove that

$$P_n(x) = \begin{vmatrix} x - b_0 & 1 & & 0 \\ \lambda_1 & x - b_1 & \ddots & \\ & \ddots & \ddots & 1 \\ 0 & & \lambda_{n-1} & x - b_{n-1} \end{vmatrix}.$$

(2) Prove that

$$P_n(x) = \begin{vmatrix} x - b_0 & \sqrt{\lambda_1} & 0 \\ \sqrt{\lambda_1} & x - b_1 & \ddots \\ & \ddots & \ddots & \\ 0 & \sqrt{\lambda_{n-1}} & x - b_{n-1} \end{vmatrix}$$

(3) Using (2) prove that if $b_n \in \mathbb{R}$ and $\lambda_n > 0$ for all, then $P_n(x)$ has real roots only.

Solution. (1) Let $Q_n(x)$ be the determinant on the right-hand side. Expanding the determinant along the last row, we obtain the recursion

$$Q_n(x) = (x - b_{n-1})Q_{n-1}(x) - \lambda_{n-1}Q_{n-2}(x)$$
 [2 points]

Since $P_n(x)$ and $Q_n(x)$ satisfy the same recurrence with with the initial conditions $Q_0(x) = 1$ and $Q_1(x) = x - b_0$, we obtain that $Q_n(x) = P_n(x)$.

(2) Let $A_n = (\alpha_{i,j})$ be the matrix in (1) and let B_n be the matrix in (2). Then it suffices to find an invertible diagonal matrix $D = \text{diag}(d_i)$ such that $B_n = DA_nD^{-1}$ [3 points]. To do this, observe that $DA_nD^{-1} = (d_i\alpha_{i,j}d_j^{-1})$. Since B_n and DA_nD^{-1} are tri-diagonal matrices, we have $B_n = DA_nD^{-1}$ if and only if the following hold:

(1.1)
$$\beta_{i,i} = d_i \alpha_{i,i} d_i^{-1},$$

(1.2)
$$\beta_{i,i+1} = d_i \alpha_{i,i+1} d_{i+1}^{-1},$$

(1.3)
$$\beta_{i+1,i} = d_{i+1}\alpha_{i+1,i}d_i^{-1}.$$

Since $\alpha_{i,i+1} = 1$ and $\beta_{i,i+1} = \sqrt{\lambda_{i+1}}$, (1.2) is equivalent to $d_{i+1} = d_i/\sqrt{\lambda_{i+1}}$. Indeed, if we set $d_0 = 1$ and $d_{i+1} = d_i/\sqrt{\lambda_{i+1}}$, then all three conditions above hold [3 points].

Note: Alternatively, it can be proved directly that the right-hand side of the equation satisfies the same recurrence as $P_n(x)$.

(3) Since the zeros of $P_n(x)$ are the eigenvalues of a real symmetric matrix, they are real **[2 points]**.

2. Homework 2 (Due: Oct 5)

Problem 2.1. Let *id* be the identity permutation.

- (1) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^2 = id$.
- (2) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^3 = id$.
- (3) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^4 = id$.
- (4) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^5 = id$.
- (5) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^6 = id$.

Solution. We have $\pi^k = id$ if and only if every cycle of π is of length divisible by k. For example, if $\pi^6 = id$, then the decreasing sequence of the lengths of cycles of π must be (6), (3,3), (3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1). The number of such permutations is 5!, $\binom{6}{3} \frac{1}{2} 2^2$, $\binom{6}{3} \binom{2}{3} \cdot 2$, $\binom{6}{3} \cdot 2$, $5 \cdot 3$, $\binom{6}{4} \cdot 3$, $\binom{6}{2}$, 1, respectively. In this way we get the answers as follows.

- (1) 76 [2 points]
- (2) 81 [2 points]
- (3) 256 [2 points]
- (4) 145 [2 points]
- (5) 396 **[2 points]**

г		
L		
L		
L		

Problem 2.2. Let c_1, \ldots, c_n be a sequence of nonnegative integers such that $\sum_{i=1}^n ic_i = n$. Show that the number of permutations $\pi \in \mathfrak{S}_n$ with c_i cycles of length *i* for all $i = 1, \ldots, n$ is

$$\frac{n!}{\prod_{i=1}^n i^{c_i} c_i!}$$

Solution. Let X be the set of such permutations. We construct a map $\phi : \mathfrak{S}_n \to X$ as follows. Given $\sigma = \sigma_1 \cdots \sigma_n \in \mathfrak{S}_n$, let $\phi(\sigma)$ be the permutation whose cycle notation is obtained from the word $\sigma_1 \cdots \sigma_n$ by placing parentheses so that the first c_1 cycles are of length 1, the next c_2 cycles are of length 2, and so on **[3 points]**. By the construction, this gives a map $\phi : \mathfrak{S}_n \to X$.

For any $\pi \in X$, there are $c_i!$ ways to arrange its c_i cycles and i ways to cyclically shift each each of these cycles. Therefore, there are $\prod_{i=1}^{n} i^{c_i} c_i!$ permutations $\sigma \in \mathfrak{S}_n$ whose image under ϕ is π [4 points]. This shows that $|X| = |\mathfrak{S}_n| / \prod_{i=1}^{n} i^{c_i} c_i!$ as desired [3 points].

Problem 2.3. For $\pi \in \mathfrak{S}_n$, let $\ell(\pi)$ be the smallest number of simple transpositions whose product is π . Prove that $\ell(\pi) = \operatorname{inv}(\pi)$.

Solution. Suppose that $\pi = s_1 \cdots s_r$ for some simple transpositions s_i 's. Since multipling a simple transposition increases or decreases the number of inversions by 1, we have $r \ge inv(\pi)$ [3 points]. Hence $\ell(\pi) \ge inv(\pi)$ [2 points].

On the other hand, we can find an expression $\pi = s_1 \cdots s_r$ with $r = \text{inv}(\pi)$ by sorting $\pi = \pi_1 \cdots \pi_n$ [3 points] because multiplying the simple transposition (i, i + 1) to the right of $\pi = \pi_1 \cdots \pi_n$ gives

$$\pi(i, i+1) = \pi_1 \cdots \pi_{i-1} \pi_{i+1} \pi_i \pi_{i+1} \cdots \pi_n$$

This implies $\ell(\pi) \leq inv(\pi)$ [2 points]. Thus, $\ell(\pi) = inv(\pi)$.

Problem 2.4. Prove that

$$\sum_{\pi \in \mathfrak{S}_n} q^{\mathrm{inv}(\pi)} = (1+q)(1+q+q^2) \cdots (1+q+\dots+q^{n-1}).$$

Solution. We proceed by induction on n. If n = 1, it is true. Let $n \ge 2$ and suppose the statement holds for n - 1. Every $\pi \in \mathfrak{S}_n$ is obtained from $\sigma \in \mathfrak{S}_{n-1}$ by inserting n after j integers from the beginning for some $0 \le j \le n - 1$ [3 points]. This construction gives $\operatorname{inv}(\pi) = \operatorname{inv}(\sigma) + j$

[3 points]. Thus

$$\sum_{\pi \in \mathfrak{S}_n} q^{\mathrm{inv}(\pi)} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \sum_{j=0}^{n-1} q^{\mathrm{inv}(\sigma)+j} = \sum_{\sigma \in \mathfrak{S}_{n-1}} q^{\mathrm{inv}(\sigma)} (1+q+\dots+q^{n-1}) \quad [2 \text{ points}]$$
$$= (1+q)(1+q+q^2) \cdots (1+q+\dots+q^{n-1}) \quad [2 \text{ points}].$$

Thus the statement is also true for n and we are done.

3. Homework 3 (Due: Oct 19)

Problem 3.1. Suppose that $\{P_n(x)\}_{n\geq 0}$ is a monic OPS for a linear functional \mathcal{L} with $\mathcal{L}(1) = 1$ given by $P_{-1}(x) = 0$, $P_0(x) = 1$, and for $n \geq 0$,

$$P_{n+1}(x) = (x-n)P_n(x) - nP_{n-1}(x).$$

Compute the following.

(1) $\mathcal{L}(x^3)$ (2) $\mathcal{L}(P_{10}(x)P_{10}(x))$ (3) $\mathcal{L}(x^3P_{10}(x)P_{12}(x))$

Solution. We can compute these quantities using

$$\mathcal{L}(x^n P_r(x) P_s) = \lambda_1 \cdots \lambda_s \sum_{\pi \in \operatorname{Motz}((0,r) \to (n,s))} \operatorname{wt}(\pi).$$

- (1) $\mathcal{L}(x^3) = 1$ [3 points]
- (2) $\mathcal{L}(P_{10}(x)P_{10}(x)) = 10!$ [3 points]

(3) $\mathcal{L}(x^3 P_{10}(x) P_{12}(x)) = 33 \cdot 12!$ [4 points]

Problem 3.2. A left-to-right minimum of a permutation $\pi = \pi_1 \cdots \pi_n$ is a number π_i such that $\pi_i = \min\{\pi_1, \ldots, \pi_i\}$. Let $\operatorname{LRmin}(\pi)$ denote the number of left-to-right minima in π . For example, if $\pi = 6741352$, then the left-to-right minima are 6, 4, 1, hence $\operatorname{LRmin}(\pi) = 3$. Prove that

$$\sum_{\pi \in \mathfrak{S}_n} \alpha^{\operatorname{cycle}(\pi)} = \sum_{\pi \in \mathfrak{S}_n} \alpha^{\operatorname{LRmin}(\pi)}$$

Solution. We can uniquely write the cycles of a permutation $\pi \in \mathfrak{S}_n$ so that each cycle starts with its smallest element and the cycles are listed in the decreasing order of their smallest elements [3 points]. For example,

$$\pi = (5, 11)(3)(1, 4, 2, 9, 10, 7, 6, 8)$$

Let $\hat{\pi}$ be the permutation obtained from this list of cycles by deleting the parentheses [4 points]. In the example above,

$$\widehat{\pi} = 5\,11\,3\,1\,4\,2\,9\,10\,7\,6\,8.$$

Then the first elements of the cycles of π are the left-to-right minima of $\hat{\pi}$ [3 points]. Since $\pi \mapsto \hat{\pi}$ is a bijection we have

$$\sum_{\pi \in \mathfrak{S}_n} \alpha^{\operatorname{cycle}(\pi)} = \sum_{\pi \in \mathfrak{S}_n} \alpha^{\operatorname{LRmin}(\pi)}.$$

Problem 3.3. Suppose that $\{P_n(x)\}_{n\geq 0}$ is a monic OPS given by $P_{-1}(x) = 0$, $P_0(x) = 1$, and for $n \geq 0$,

$$P_{n+1}(x) = (x-1)P_n(x) - nP_{n-1}(x).$$

Prove that μ_n is equal to the number of involutions in \mathfrak{S}_n . (An involution is a permutation π such that π^2 is the identity map.)

Solution. Recall the bijection $\phi : \operatorname{CH}_n \to \Pi_n$ between the Charlier histories of length n and the set partitions of [n] for the case $b_n = n + 1$ and $\lambda_n = n$ [3 points]. If $b_n = 1$ and $\lambda_n = n$, then by restricting this map to the Charlier histories with 0 label for every horizontal step, the images are the set partitions in which every block is of size 1 or 2 [4 points]. Then we can identify such a set partition as an involution [3 points]. This implies the statement in the problem.

Problem 3.4. Suppose that $\{P_n(x)\}_{n\geq 0}$ is a monic OPS given by $P_{-1}(x) = 0$, $P_0(x) = 1$, and for $n \geq 0$,

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x),$$

where $\lambda_n \neq 0$ for all $n \geq 1$.

Using the fact $\mu_n = \sum_{\pi \in \text{Mot}_{z_n}} \text{wt}(\pi)$, prove that $\mu_{2n+1} = 0$ for all $n \ge 0$ if and only if $b_n = 0$ for all $n \ge 0$.

Solution. (\Leftarrow): Suppose $b_n = 0$ for all $n \ge 0$. Then μ_n is the generating function for Dyck paths, hence $\mu_{2n+1} = 0$ [3 points].

 (\Rightarrow) : Suppose that $\mu_{2n+1} = 0$ for all $n \ge 0$. Then we prove $b_n = 0$ for all $n \ge 0$ by induction on n. Since $\mu_1 = b_0$, we have $b_0 = 0$ [3 points]. Suppose that $b_i = 0$ for all $0 \le i < n$. Then

$$\mu_{2n+1} = \sum_{\text{Motz}_{2n+1}} \text{wt}(\pi) = b_n \lambda_1 \cdots \lambda_n \quad [4 \text{ points}]$$

because all Motzkin paths in $Motz_{2n+1}$ except $U^n H D^n$ has weight 0. Since $\mu_{2n+1} = 0$ and $\lambda_i \leq 0$ for all i, we obtain $b_n = 0$. By induction, $b_n = 0$ for all $n \geq 0$.

4. Homework 4 (Due: Nov 9)

Problem 4.1. Let G be the directed graph whose vertex set V and (directed) edge set E are given by

- $V = \{(i, j) : 0 \le i, j \le 5\},\$
- $E = \{(i,j) \to (i+1,j) : 0 \le i \le 4, 0 \le j \le 5\} \cup \{(i,j) \to (i,j+1) : 0 \le i \le 5, 0 \le j \le 4\}.$
- (1) Find the number of paths from (0,0) to (5,5).
- (2) Find the number of paths from (0,0) to (5,5) that do not visit (3,3).
- (3) Find the number of paths from (0,0) to (5,5) that do not visit any of (1,3), (3,3), (4,3). (Write you answer as a single determinant.)
- (4) Let $\mathbf{A} = (A_1, A_2, A_3)$ and $\mathbf{B} = (B_1, B_2, B_3)$, where $A_1 = (0, 0), A_2 = (1, 0), A_3 = (2, 0),$ $B_1 = (5,5), B_2 = (5,4), \text{ and } B_3 = (5,3).$ Find the cardinality of the set NI($A \rightarrow B$). (Write you answer as a single determinant.)

Solution. (1) $\binom{10}{5}$ [2 points] (2) $\binom{10}{5} - \binom{6}{2}\binom{4}{2}$ [2 points] (3) Let $A_1 = (0,0), B_1 = (5,5)$ and $A_2 = B_2 = (1,3), A_3 = B_3 = (3,3), A_4 = B_4 = (4,3)$ [2 points]. Then by the LGV lemma, the answer is

$$\det \begin{pmatrix} \begin{pmatrix} 10 \\ 5 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 6 \\ 3 \end{pmatrix} & \begin{pmatrix} 7 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 6 \\ 2 \end{pmatrix} & 1 & \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 2 \end{pmatrix} & 0 & 1 & \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 2 \end{pmatrix} & 0 & 0 & 1 \end{pmatrix}.$$
 [2 points]

(4) By the LGV lemma, the answer is

$$\det \begin{pmatrix} \binom{10}{5} & \binom{9}{4} & \binom{8}{3} \\ \binom{9}{4} & \binom{8}{4} & \binom{7}{3} \\ \binom{8}{3} & \binom{7}{3} & \binom{6}{3} \end{pmatrix}. \quad [2 \text{ points}]$$

Problem 4.2. Evaluate the determinants. Here, C_n is the *n*th Catalan number.

(1) det $(C_{i+j})_{i,j=0}^{2023}$ (2) det $\left(\binom{2i+2j}{i+j}\right)_{i,j=0}^{2023}$

Solution. (1) Consider the directed graph G = (V, E) where $V = \mathbb{Z} \times \mathbb{Z}_{>0}$ and edges consisting of up steps U = (1, 1) and down steps D = (1, -1). Let $A = (A_0, A_1, \dots, A_{2023})$ and $B = (A_0, A_1, \dots, A_{2023})$ $(B_0, B_1, \ldots, B_{2023})$, where $A_i = (-i, 0)$ and $B_i = (i, 0)$ [2 points]. Then

det
$$(C_{i+j})_{i,j=0}^{2023} = |\operatorname{NI}(A \to B)|.$$
 [2 points]

Since there is only one element in $NI(\mathbf{A} \rightarrow \mathbf{B})$, the answer is 1.

(2) We have shown that

$$\binom{2n}{n} = \sum_{\pi \in \operatorname{Dyck}_n} 2^{a(\pi)},$$

where $a(\pi)$ is the number of down steps in π touching the x-axis [2 points]. Define an edge-weight $w: E \to K$ for the graph G above by w(U) = 1 and w(D) = 2 if D has starting height 1 and w(D) = 1 otherwise. Then

$$\det\left(\binom{2i+2j}{i+j}\right)_{i,j=0}^{2023} = \sum_{\boldsymbol{p}\in\mathrm{NI}(\boldsymbol{A}\to\boldsymbol{B})}\mathrm{sgn}(\boldsymbol{p})w(p).$$
 [2 points]

Since there is only one element in NI($A \rightarrow B$), which has 2023 down steps with starting height 1 in total, the answer is 2^{2023} [2 points].

Problem 4.3. Let $\{P_n(x)\}_{n\geq 0}$ be a monic OPS satisfying

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x),$$

and let μ_n be the *n*th moment. Suppose that $\lambda_n > 0$ for all $n \ge 1$ and $b_n \ge 0$ for all $n \ge 0$. Prove or disprove each statement.

(1) For all $n \ge 0$,

$$\det(\mu_{i+j})_{i,j=0}^n > 0.$$

(2) For all $n \ge 0$,

$$\det(\mu_{2i+2j})_{i,j=0}^n > 0.$$

(3) If $b_k = 0$ for all $k \ge 0$, then for all $n \ge 0$,

$$\det(\mu_{2i+2j})_{i,j=0}^n > 0.$$

(4) Let $\{r_n\}_{n\geq 0}$ and $\{s_n\}_{n\geq 0}$ be strictly increasing sequences of nonnegative even integers. If $b_k = 0$ for all $k \geq 0$, then for all $n \geq 0$,

$$\det(\mu_{r_i+s_j})_{i,j=0}^n > 0$$

Solution. (1) We have

$$\det(\mu_{i+j})_{i,j=0}^n = \lambda_1^n \lambda_2^{n-1} \cdots \lambda_n^1 > 0. \quad [2 \text{ points}]$$

(2) Since there are figure "X"'s, we cannot determine the positivity of this determinant using the LGV lemma [2 points]. (I do not know if this is positive or not. Please let me know if you have a proof or a counterexample.)

(3) We have

$$\det(\mu_{2i+2j})_{i,j=0}^{n} = \Delta_{n}(2) = (\lambda_{1}\lambda_{2})^{n}(\lambda_{3}\lambda_{4})^{n-1}\cdots(\lambda_{2n-1}\lambda_{2n})^{1} > 0.$$
 [2 points]

(4) Let $\mathbf{A} = (A_0, A_1, \dots, A_n)$ and $\mathbf{B} = (B_0, B_1, \dots, B_n)$, where $A_i = (-r_i, 0)$ and $B_i = (s_i, 0)$. Then

$$\det(\mu_{r_i+s_j})_{i,j=0}^n = \sum_{\boldsymbol{p}\in\mathrm{NI}(\boldsymbol{A}\to\boldsymbol{B})}\mathrm{sgn}(\boldsymbol{p})w(\boldsymbol{p}),$$

where $\mathbf{p} = (p_0, \ldots, p_n)$ is a nonintersecting *n*-path such that each p_i is a Dyck path. Since r_i and s_j are even, for every point (a, b) of a path p_i , a + b is even [2 points]. This means that there is no figure "X" among p_i 's. Therefore, each p_i is a path from A_i to B_i and $\operatorname{sgn}(\mathbf{p}) = 1$. Hence,

$$\det(\mu_{r_i+s_j})_{i,j=0}^n = \sum_{\boldsymbol{p} \in \mathrm{NI}(\boldsymbol{A} \to \boldsymbol{B})} \mathrm{wt}(\boldsymbol{p}) > 0. \quad [\mathbf{2} \text{ points}] \qquad \Box$$

Problem 4.4. Prove the following two *q*-binomial theorems:

$$(1+x)(1+qx)\cdots(1+q^{n-1}x) = \sum_{k=0}^{n} q^{\binom{k}{2}} \begin{bmatrix} n\\ k \end{bmatrix}_{q} x^{k},$$
$$\frac{1}{(1-x)(1-qx)\cdots(1-q^{n-1}x)} = \sum_{k=0}^{\infty} \begin{bmatrix} n+k-1\\ k \end{bmatrix}_{q} x^{k}$$

Solution. We have

$$(1+x)(1+qx)\cdots(1+q^{n-1}x) = \sum_{k=0}^{n} \sum_{0 \le i_1 < \cdots < i_k \le n-1} q^{i_1+\cdots+i_k} x^k.$$
 [2 points]

Replacing (i_1, \ldots, i_k) by (j_1, \ldots, j_k) with $j_t = i_t - t + 1$, we get

$$(1+x)(1+qx)\cdots(1+q^{n-1}x) = \sum_{k=0}^{n} q^{\binom{k}{2}} \sum_{0 \le j_1 \le \dots \le j_k \le n-k} q^{j_1+\dots+j_k} x^k.$$
 [2 points]

Since

$$\sum_{0 \le j_1 \le \dots \le j_k \le n-k} q^{j_1 + \dots + j_k} = \sum_{\lambda \subseteq ((n-k)^k)} q^{|\lambda|} = \begin{bmatrix} n \\ k \end{bmatrix}_q, \quad [\mathbf{2} \text{ points}]$$

we obtain the first identity.

For the second identity, note that

$$\frac{1}{(1-x)(1-qx)\cdots(1-q^{n-1}x)} = \sum_{k=0}^{\infty} \sum_{0 \le i_1 \le \dots \le i_k \le n-1} q^{i_1+\dots+i_k} x^k.$$
 [2 points]

Since

$$\sum_{\substack{0 \le i_1 \le \dots \le i_k \le n-1 \\ k}} q^{i_1 + \dots + i_k} = {n+k-1 \brack k}_q, \quad [2 \text{ points}]$$

we obtain the second identity.

