HOMEWORK

Contents

1. Homework 1 (Due: Sep 21) 2
2. Homework 2 (Due: Oct 5) 4
3. Homework 3 (Due: Oct 19) 6
4. Homework 4 (Due: Nov 9) 8

1. Homework 1 (Due: Sep 21)

Problem 1.1. Let \mathcal{L} be a positive-definite linear functional with monic OPS $\left\{P_{n}(x)\right\}_{n \geq 0}$. Prove the following extremal property: for any monic real polynomial $\pi(x) \neq P_{n}(x)$ of degree n,

$$
\mathcal{L}\left(P_{n}(x)^{2}\right)<\mathcal{L}\left(\pi(x)^{2}\right)
$$

Solution. Let $\pi(x)=\sum_{k=0}^{n} a_{k} P_{k}(x)$. Since both $\pi(x)$ and $P_{n}(x)$ are monic, we have $a_{n}=1$ [3 points]. Then

$$
\begin{aligned}
\mathcal{L}\left(\pi(x)^{2}\right) & \left.=\sum_{k=0}^{n} a_{k}^{2} \mathcal{L}\left(P_{k}(x)^{2}\right) \quad \text { [4 points }\right] \\
& \geq a_{n}^{2} \mathcal{L}\left(P_{n}(x)^{2}\right)=\mathcal{L}\left(P_{n}(x)^{2}\right) \quad[3 \text { points }]
\end{aligned}
$$

Problem 1.2. Let \mathcal{L} be a linear functional such that $\Delta_{n} \neq 0$ for all $n \geq 0$. Prove that if $\pi(x)$ is a polynomial such that $\mathcal{L}\left(x^{k} \pi(x)\right)=0$ for all $k \geq 0$, then $\pi(x)=0$.

Solution. Since $\Delta_{n} \neq 0$, there is a monic OPS $\left\{P_{n}(x)\right\}_{n \geq 0}$ for $\mathcal{L} \quad[\mathbf{3}$ points]. Let $\pi(x)=$ $\sum_{k=0}^{n} a_{k} P_{k}(x)$. Since $\mathcal{L}\left(x^{k} \pi(x)\right)=0$ for all $k \geq 0$, we have $\mathcal{L}(p(x) \pi(x))=0$ for any polynomial $p(x) \quad\left[\mathbf{3}\right.$ points]. Then, for each $0 \leq k \leq n$, we have $0=\mathcal{L}\left(P_{k}(x) \pi(x)\right)=a_{k} \mathcal{L}\left(P_{k}(x)^{2}\right)$ [2 points]. Since $\mathcal{L}\left(P_{k}(x)^{2}\right) \neq 0$, we get $a_{k}=0$ for all $0 \leq k \leq n \quad$ [2 points]. Hence $\pi(x)=0$.

A common mistake: It is not true in general that $\mathcal{L}\left(x^{k} P_{n}(x)\right)=0$ for $k \neq n$. We can only say that $\mathcal{L}\left(x^{k} P_{n}(x)\right)=0$ for $k<n$.

Problem 1.3. The Tchebyshev polynomials of the second kind $U_{n}(x)$ are defined by

$$
U_{n}(x)=\frac{\sin (n+1) \theta}{\sin \theta}, \quad x=\cos \theta, \quad n \geq 0
$$

(1) Prove that $U_{n}(x)$ is a polynomial of degree n.
(2) Prove that

$$
U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x), \quad n \geq 0
$$

where $U_{-1}(x)=0$ and $U_{0}(x)=1$.
(3) Prove that

$$
\int_{-1}^{1} U_{m}(x) U_{n}(x)\left(1-x^{2}\right)^{1 / 2} d x=\frac{\pi}{2} \delta_{m, n}
$$

(4) Find the 3 -term recurrence for the normalized Tchebyshev polynomials of the second kind. More precisely, find the numbers b_{n} and λ_{n} such that

$$
\hat{U}_{n+1}(x)=\left(x-b_{n}\right) \hat{U}_{n}(x)-\lambda_{n} \hat{U}_{n-1}(x), \quad n \geq 0
$$

where $\hat{U}_{n}(x)$ is the monic polynomial that is a scalar multiple of $U_{n}(x)$.
Solution. (1) This follows from (2) [2 points].
(2) By the addition rule for the sine function,

$$
\begin{aligned}
& \sin (n+1) \theta=\sin n \theta \cos \theta+\cos n \theta \sin \theta \\
& \sin (n-1) \theta=\sin n \theta \cos \theta-\cos n \theta \sin \theta
\end{aligned}
$$

Adding the two equations and dividing both sides by $\sin \theta$, we get

$$
U_{n}(x)+U_{n-2}(x)=2 x U_{n-1}(x), \quad n \geq 1 \quad[2 \text { points }]
$$

This is equivalent to the recurrence in the problem.
(3) By the change of variables $x=\cos \theta, 0 \leq \theta \leq \pi$, with $d x=-\sin \theta d \theta=-\sqrt{1-x^{2}} d \theta$,

$$
\begin{aligned}
& \int_{-1}^{1} U_{m}(x) U_{n}(x)\left(1-x^{2}\right)^{1 / 2} d x \\
& =\int_{0}^{\pi} \sin (m+1) \theta \sin (n+1) \theta d \theta \quad[\mathbf{2} \text { points }] \\
& =\frac{1}{2} \int_{0}^{\pi}(\cos (m-n) \theta+\cos (m+n) \theta) d \theta \quad[\mathbf{2} \text { points }] \\
& =\frac{\pi}{2} \delta_{m, n}
\end{aligned}
$$

(4) Since $\operatorname{deg} U_{n}(x)=2^{n}$ for all $n \geq 0$, we have $\hat{U}_{n}(x)=2^{-n} U_{n}(x)$. Dividing both sides of the recurrence in (2) by 2^{n+1}, we obtain $b_{n}=0$ and $\lambda_{n}=1 / 4 \quad$ [2 points].

Problem 1.4. Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be the monic OPS for a linear functional \mathcal{L} with three-term recurrence

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x), \quad n \geq 0
$$

(1) Prove that

$$
P_{n}(x)=\left|\begin{array}{cccc}
x-b_{0} & 1 & & 0 \\
\lambda_{1} & x-b_{1} & \ddots & \\
& \ddots & \ddots & 1 \\
0 & & \lambda_{n-1} & x-b_{n-1}
\end{array}\right|
$$

(2) Prove that

$$
P_{n}(x)=\left|\begin{array}{cccc}
x-b_{0} & \sqrt{\lambda_{1}} & & 0 \\
\sqrt{\lambda_{1}} & x-b_{1} & \ddots & \\
& \ddots & \ddots & \sqrt{\lambda_{n-1}} \\
0 & & \sqrt{\lambda_{n-1}} & x-b_{n-1}
\end{array}\right|
$$

(3) Using (2) prove that if $b_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ for all, then $P_{n}(x)$ has real roots only.

Solution. (1) Let $Q_{n}(x)$ be the determinant on the right-hand side. Expanding the determinant along the last row, we obtain the recursion

$$
Q_{n}(x)=\left(x-b_{n-1}\right) Q_{n-1}(x)-\lambda_{n-1} Q_{n-2}(x) \quad[2 \text { points }] .
$$

Since $P_{n}(x)$ and $Q_{n}(x)$ satisfy the same recurrence with with the initial conditions $Q_{0}(x)=1$ and $Q_{1}(x)=x-b_{0}$, we obtain that $Q_{n}(x)=P_{n}(x)$.
(2) Let $A_{n}=\left(\alpha_{i, j}\right)$ be the matrix in (1) and let B_{n} be the matrix in (2). Then it suffices to find an invertible diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ such that $B_{n}=D A_{n} D^{-1} \quad$ [3 points]. To do this, observe that $D A_{n} D^{-1}=\left(d_{i} \alpha_{i, j} d_{j}^{-1}\right)$. Since B_{n} and $D A_{n} D^{-1}$ are tri-diagonal matrices, we have $B_{n}=D A_{n} D^{-1}$ if and only if the following hold:

$$
\begin{align*}
\beta_{i, i} & =d_{i} \alpha_{i, i} d_{i}^{-1} \tag{1.1}\\
\beta_{i, i+1} & =d_{i} \alpha_{i, i+1} d_{i+1}^{-1} \tag{1.2}\\
\beta_{i+1, i} & =d_{i+1} \alpha_{i+1, i} d_{i}^{-1} \tag{1.3}
\end{align*}
$$

Since $\alpha_{i, i+1}=1$ and $\beta_{i, i+1}=\sqrt{\lambda_{i+1}}, \sqrt{1.2}$ is equivalent to $d_{i+1}=d_{i} / \sqrt{\lambda_{i+1}}$. Indeed, if we set $d_{0}=1$ and $d_{i+1}=d_{i} / \sqrt{\lambda_{i+1}}$, then all three conditions above hold \quad [$\mathbf{3}$ points].

Note: Alternatively, it can be proved directly that the right-hand side of the equation satisfies the same recurrence as $P_{n}(x)$.
(3) Since the zeros of $P_{n}(x)$ are the eigenvalues of a real symmetric matrix, they are real [2 points].

2. Homework 2 (Due: Oct 5)

Problem 2.1. Let $i d$ be the identity permutation.
(1) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{2}=i d$.
(2) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{3}=i d$.
(3) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{4}=i d$.
(4) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{5}=i d$.
(5) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{6}=i d$.

Solution. We have $\pi^{k}=i d$ if and only if every cycle of π is of length divisible by k. For example, if $\pi^{6}=i d$, then the decreasing sequence of the lengths of cycles of π must be $(6),(3,3),(3,2,1)$, $(3,1,1,1),(2,2,2),(2,2,1,1),(2,1,1,1,1),(1,1,1,1,1,1)$. The number of such permutations is 5 !, $\binom{6}{3} \frac{1}{2} 2^{2},\binom{6}{3}\binom{3}{2} \cdot 2,\binom{6}{3} \cdot 2,5 \cdot 3,\binom{6}{4} \cdot 3,\binom{6}{2}, 1$, respectively. In this way we get the answers as follows.
(1) 76 [2 points]
(2) 81 [2 points]
(3) 256 [2 points]
(4) 145 [2 points]
(5) 396 [2 points]

Problem 2.2. Let c_{1}, \ldots, c_{n} be a sequence of nonnegative integers such that $\sum_{i=1}^{n} i c_{i}=n$. Show that the number of permutations $\pi \in \mathfrak{S}_{n}$ with c_{i} cycles of length i for all $i=1, \ldots, n$ is

$$
\frac{n!}{\prod_{i=1}^{n} i^{c_{i}} c_{i}!}
$$

Solution. Let X be the set of such permutations. We construct a map $\phi: \mathfrak{S}_{n} \rightarrow X$ as follows. Given $\sigma=\sigma_{1} \cdots \sigma_{n} \in \mathfrak{S}_{n}$, let $\phi(\sigma)$ be the permutation whose cycle notation is obtained from the word $\sigma_{1} \cdots \sigma_{n}$ by placing parentheses so that the first c_{1} cycles are of length 1 , the next c_{2} cycles are of length 2, and so on [3 points]. By the construction, this gives a map $\phi: \mathfrak{S}_{n} \rightarrow X$.

For any $\pi \in X$, there are c_{i} ! ways to arrange its c_{i} cycles and i ways to cyclically shift each each of these cycles. Therefore, there are $\prod_{i=1}^{n} i^{c_{i}} c_{i}$! permutations $\sigma \in \mathfrak{S}_{n}$ whose image under ϕ is $\pi \quad$ [4 points]. This shows that $|X|=\left|\mathfrak{S}_{n}\right| / \prod_{i=1}^{n} i^{c_{i}} c_{i}!$ as desired \quad [3 points].

Problem 2.3. For $\pi \in \mathfrak{S}_{n}$, let $\ell(\pi)$ be the smallest number of simple transpositions whose product is π. Prove that $\ell(\pi)=\operatorname{inv}(\pi)$.

Solution. Suppose that $\pi=s_{1} \cdots s_{r}$ for some simple transpositions s_{i} 's. Since multipling a simple transposition increases or decreases the number of inversions by 1 , we have $r \geq \operatorname{inv}(\pi) \quad$ [$\mathbf{3}$ points]. Hence $\ell(\pi) \geq \operatorname{inv}(\pi) \quad[2$ points].

On the other hand, we can find an expression $\pi=s_{1} \cdots s_{r}$ with $r=\operatorname{inv}(\pi)$ by sorting $\pi=$ $\pi_{1} \cdots \pi_{n} \quad$ [3 points] because multiplying the simple transposition $(i, i+1)$ to the right of $\pi=$ $\pi_{1} \cdots \pi_{n}$ gives

$$
\pi(i, i+1)=\pi_{1} \cdots \pi_{i-1} \pi_{i+1} \pi_{i} \pi_{i+1} \cdots \pi_{n}
$$

This implies $\ell(\pi) \leq \operatorname{inv}(\pi) \quad[2$ points $]$. Thus, $\ell(\pi)=\operatorname{inv}(\pi)$.
Problem 2.4. Prove that

$$
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\pi)}=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)
$$

Solution. We proceed by induction on n. If $n=1$, it is true. Let $n \geq 2$ and suppose the statement holds for $n-1$. Every $\pi \in \mathfrak{S}_{n}$ is obtained from $\sigma \in \mathfrak{S}_{n-1}$ by inserting n after j integers from the beginning for some $0 \leq j \leq n-1 \quad$ [3 points]. This construction gives $\operatorname{inv}(\pi)=\operatorname{inv}(\sigma)+j$
[3 points]. Thus

$$
\begin{aligned}
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\pi)} & =\sum_{\sigma \in \mathfrak{S}_{n-1}} \sum_{j=0}^{n-1} q^{\operatorname{inv}(\sigma)+j}=\sum_{\sigma \in \mathfrak{S}_{n-1}} q^{\operatorname{inv}(\sigma)}\left(1+q+\cdots+q^{n-1}\right) \quad[2 \text { points }] \\
& =(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right) \quad[2 \text { points }] .
\end{aligned}
$$

Thus the statement is also true for n and we are done.

3. Homework 3 (Due: Oct 19)

Problem 3.1. Suppose that $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a monic OPS for a linear functional \mathcal{L} with $\mathcal{L}(1)=1$ given by $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=(x-n) P_{n}(x)-n P_{n-1}(x) .
$$

Compute the following.
(1) $\mathcal{L}\left(x^{3}\right)$
(2) $\mathcal{L}\left(P_{10}(x) P_{10}(x)\right)$
(3) $\mathcal{L}\left(x^{3} P_{10}(x) P_{12}(x)\right)$

Solution. We can compute these quantities using

$$
\mathcal{L}\left(x^{n} P_{r}(x) P_{s}\right)=\lambda_{1} \cdots \lambda_{s} \sum_{\pi \in \operatorname{Motz}((0, r) \rightarrow(n, s))} \mathrm{wt}(\pi) .
$$

(1) $\mathcal{L}\left(x^{3}\right)=1$ [3 points]
(2) $\mathcal{L}\left(P_{10}(x) P_{10}(x)\right)=10$! [3 points]
(3) $\mathcal{L}\left(x^{3} P_{10}(x) P_{12}(x)\right)=33 \cdot 12$! [4 points]

Problem 3.2. A left-to-right minimum of a permutation $\pi=\pi_{1} \cdots \pi_{n}$ is a number π_{i} such that $\pi_{i}=\min \left\{\pi_{1}, \ldots, \pi_{i}\right\}$. Let $\operatorname{LRmin}(\pi)$ denote the number of left-to-right minima in π. For example, if $\pi=6741352$, then the left-to-right minima are $6,4,1$, hence $\operatorname{LRmin}(\pi)=3$. Prove that

$$
\sum_{\pi \in \mathfrak{S}_{n}} \alpha^{\operatorname{cycle}(\pi)}=\sum_{\pi \in \mathfrak{S}_{n}} \alpha^{\operatorname{LRmin}(\pi)}
$$

Solution. We can uniquely write the cycles of a permutation $\pi \in \mathfrak{S}_{n}$ so that each cycle starts with its smallest element and the cycles are listed in the decreasing order of their smallest elements [3 points]. For example,

$$
\pi=(5,11)(3)(1,4,2,9,10,7,6,8)
$$

Let $\widehat{\pi}$ be the permutation obtained from this list of cycles by deleting the parentheses [4 points]. In the example above,

$$
\widehat{\pi}=5113142910768
$$

Then the first elements of the cycles of π are the left-to-right minima of $\widehat{\pi}$ [$\mathbf{3}$ points]. Since $\pi \mapsto \widehat{\pi}$ is a bijection we have

$$
\sum_{\pi \in \mathfrak{S}_{n}} \alpha^{\operatorname{cycle}(\pi)}=\sum_{\pi \in \mathfrak{S}_{n}} \alpha^{\operatorname{LRmin}(\pi)}
$$

Problem 3.3. Suppose that $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a monic OPS given by $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=(x-1) P_{n}(x)-n P_{n-1}(x) .
$$

Prove that μ_{n} is equal to the number of involutions in \mathfrak{S}_{n}. (An involution is a permutation π such that π^{2} is the identity map.)

Solution. Recall the bijection $\phi: \mathrm{CH}_{n} \rightarrow \Pi_{n}$ between the Charlier histories of length n and the set partitions of [n] for the case $b_{n}=n+1$ and $\lambda_{n}=n$ [3 points]. If $b_{n}=1$ and $\lambda_{n}=n$, then by restricting this map to the Charlier histories with 0 label for every horizontal step, the images are the set partitions in which every block is of size 1 or 2 [4 points]. Then we can identify such a set partition as an involution [$\mathbf{3}$ points]. This implies the statement in the problem.

Problem 3.4. Suppose that $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a monic OPS given by $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

where $\lambda_{n} \neq 0$ for all $n \geq 1$.
Using the fact $\mu_{n}=\sum_{\pi \in \operatorname{Motz}_{n}} \operatorname{wt}(\pi)$, prove that $\mu_{2 n+1}=0$ for all $n \geq 0$ if and only if $b_{n}=0$ for all $n \geq 0$.

Solution. (\Leftarrow) : Suppose $b_{n}=0$ for all $n \geq 0$. Then μ_{n} is the generating function for Dyck paths, hence $\mu_{2 n+1}=0$ [3 points].
(\Rightarrow) : Suppose that $\mu_{2 n+1}=0$ for all $n \geq 0$. Then we prove $b_{n}=0$ for all $n \geq 0$ by induction on n. Since $\mu_{1}=b_{0}$, we have $b_{0}=0$ [3 points]. Suppose that $b_{i}=0$ for all $0 \leq i<n$. Then

$$
\mu_{2 n+1}=\sum_{\operatorname{Motz}_{2 n+1}} \mathrm{wt}(\pi)=b_{n} \lambda_{1} \cdots \lambda_{n} \quad[4 \text { points }]
$$

because all Motzkin paths in $\operatorname{Motz}_{2 n+1}$ except $U^{n} H D^{n}$ has weight 0 . Since $\mu_{2 n+1}=0$ and $\lambda_{i} \leq 0$ for all i, we obtain $b_{n}=0$. By induction, $b_{n}=0$ for all $n \geq 0$.

4. Homework 4 (Due: Nov 9)

Problem 4.1. Let G be the directed graph whose vertex set V and (directed) edge set E are given by
$V=\{(i, j): 0 \leq i, j \leq 5\}$,
$E=\{(i, j) \rightarrow(i+1, j): 0 \leq i \leq 4,0 \leq j \leq 5\} \cup\{(i, j) \rightarrow(i, j+1): 0 \leq i \leq 5,0 \leq j \leq 4\}$.
(1) Find the number of paths from $(0,0)$ to $(5,5)$.
(2) Find the number of paths from $(0,0)$ to $(5,5)$ that do not visit $(3,3)$.
(3) Find the number of paths from $(0,0)$ to $(5,5)$ that do not visit any of $(1,3),(3,3),(4,3)$. (Write you answer as a single determinant.)
(4) Let $\boldsymbol{A}=\left(A_{1}, A_{2}, A_{3}\right)$ and $\boldsymbol{B}=\left(B_{1}, B_{2}, B_{3}\right)$, where $A_{1}=(0,0), A_{2}=(1,0), A_{3}=(2,0)$, $B_{1}=(5,5), B_{2}=(5,4)$, and $B_{3}=(5,3)$. Find the cardinality of the set $\mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})$. (Write you answer as a single determinant.)

Solution. (1) $\binom{10}{5}$ [2 points]
(2) $\binom{10}{5}-\binom{6}{2}\binom{4}{2}$ [2 points]
(3) Let $A_{1}=(0,0), B_{1}=(5,5)$ and $A_{2}=B_{2}=(1,3), A_{3}=B_{3}=(3,3), A_{4}=B_{4}=(4,3)$ [2 points]. Then by the LGV lemma, the answer is

$$
\operatorname{det}\left(\begin{array}{cccc}
\binom{10}{5} & \binom{4}{1} & \binom{6}{3} & \binom{7}{3} \\
\binom{6}{2} & 1 & \binom{2}{0} & \binom{3}{0} \\
\binom{4}{2} & 0 & 1 & \binom{1}{0} \\
\binom{3}{2} & 0 & 0 & 1
\end{array}\right) \cdot[\mathbf{2} \text { points }]
$$

(4) By the LGV lemma, the answer is

$$
\operatorname{det}\left(\begin{array}{ccc}
\binom{10}{5} & \binom{9}{4} & \binom{8}{3} \\
\binom{9}{4} & \binom{8}{4} & \binom{7}{3} \\
\binom{8}{3} & \binom{7}{3} & \binom{6}{3}
\end{array}\right) \cdot[2 \text { points }]
$$

Problem 4.2. Evaluate the determinants. Here, C_{n} is the nth Catalan number.
(1) $\operatorname{det}\left(C_{i+j}\right)_{i, j=0}^{2023}$
(2) $\operatorname{det}\left(\binom{2 i+2 j}{i+j}\right)_{i, j=0}^{2023}$

Solution. (1) Consider the directed graph $G=(V, E)$ where $V=\mathbb{Z} \times \mathbb{Z}_{\geq 0}$ and edges consisting of up steps $U=(1,1)$ and down steps $D=(1,-1)$. Let $\boldsymbol{A}=\left(A_{0}, A_{1}, \ldots, A_{2023}\right)$ and $\boldsymbol{B}=$ $\left(B_{0}, B_{1}, \ldots, B_{2023}\right)$, where $A_{i}=(-i, 0)$ and $B_{i}=(i, 0)$ [2 points]. Then

$$
\operatorname{det}\left(C_{i+j}\right)_{i, j=0}^{2023}=|\mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})| \cdot \quad[2 \text { points }]
$$

Since there is only one element in $\mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})$, the answer is 1 .
(2) We have shown that

$$
\binom{2 n}{n}=\sum_{\pi \in \mathrm{Dyck}_{n}} 2^{a(\pi)}
$$

where $a(\pi)$ is the number of down steps in π touching the x-axis [2 points]. Define an edge-weight $w: E \rightarrow K$ for the graph G above by $w(U)=1$ and $w(D)=2$ if D has starting height 1 and $w(D)=1$ otherwise. Then

$$
\operatorname{det}\left(\binom{2 i+2 j}{i+j}\right)_{i, j=0}^{2023}=\sum_{\boldsymbol{p} \in \mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})} \operatorname{sgn}(\boldsymbol{p}) w(p) . \quad[\mathbf{2} \text { points }]
$$

Since there is only one element in $\mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})$, which has 2023 down steps with starting height 1 in total, the answer is 2^{2023} [2 points].

Problem 4.3. Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be a monic OPS satisfying

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

and let μ_{n} be the nth moment. Suppose that $\lambda_{n}>0$ for all $n \geq 1$ and $b_{n} \geq 0$ for all $n \geq 0$. Prove or disprove each statement.
(1) For all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{i+j}\right)_{i, j=0}^{n}>0
$$

(2) For all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{2 i+2 j}\right)_{i, j=0}^{n}>0
$$

(3) If $b_{k}=0$ for all $k \geq 0$, then for all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{2 i+2 j}\right)_{i, j=0}^{n}>0
$$

(4) Let $\left\{r_{n}\right\}_{n \geq 0}$ and $\left\{s_{n}\right\}_{n \geq 0}$ be strictly increasing sequences of nonnegative even integers. If $b_{k}=0$ for all $k \geq 0$, then for all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{r_{i}+s_{j}}\right)_{i, j=0}^{n}>0
$$

Solution. (1) We have

$$
\operatorname{det}\left(\mu_{i+j}\right)_{i, j=0}^{n}=\lambda_{1}^{n} \lambda_{2}^{n-1} \cdots \lambda_{n}^{1}>0 . \quad[2 \text { points }]
$$

(2) Since there are figure " X "'s, we cannot determine the positivity of this determinant using the LGV lemma [2 points]. (I do not know if this is positive or not. Please let me know if you have a proof or a counterexample.)
(3) We have

$$
\operatorname{det}\left(\mu_{2 i+2 j}\right)_{i, j=0}^{n}=\Delta_{n}(2)=\left(\lambda_{1} \lambda_{2}\right)^{n}\left(\lambda_{3} \lambda_{4}\right)^{n-1} \cdots\left(\lambda_{2 n-1} \lambda_{2 n}\right)^{1}>0 . \quad[2 \text { points }]
$$

(4) Let $\boldsymbol{A}=\left(A_{0}, A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=\left(B_{0}, B_{1}, \ldots, B_{n}\right)$, where $A_{i}=\left(-r_{i}, 0\right)$ and $B_{i}=\left(s_{i}, 0\right)$. Then

$$
\operatorname{det}\left(\mu_{r_{i}+s_{j}}\right)_{i, j=0}^{n}=\sum_{\boldsymbol{p} \in \operatorname{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})} \operatorname{sgn}(\boldsymbol{p}) w(\boldsymbol{p})
$$

where $\boldsymbol{p}=\left(p_{0}, \ldots, p_{n}\right)$ is a nonintersecting n-path such that each p_{i} is a Dyck path. Since r_{i} and s_{j} are even, for every point (a, b) of a path $p_{i}, a+b$ is even [2 points]. This means that there is no figure "X" among p_{i} 's. Therefore, each p_{i} is a path from A_{i} to B_{i} and $\operatorname{sgn}(\boldsymbol{p})=1$. Hence,

$$
\operatorname{det}\left(\mu_{r_{i}+s_{j}}\right)_{i, j=0}^{n}=\sum_{\boldsymbol{p} \in \mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})} \mathrm{wt}(\boldsymbol{p})>0 . \quad[\mathbf{2} \text { points }]
$$

Problem 4.4. Prove the following two q-binomial theorems:

$$
\begin{aligned}
& (1+x)(1+q x) \cdots\left(1+q^{n-1} x\right)=\sum_{k=0}^{n} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k} \\
& \frac{1}{(1-x)(1-q x) \cdots\left(1-q^{n-1} x\right)}=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} x^{k} .
\end{aligned}
$$

Solution. We have

$$
(1+x)(1+q x) \cdots\left(1+q^{n-1} x\right)=\sum_{k=0}^{n} \sum_{0 \leq i_{1}<\cdots<i_{k} \leq n-1} q^{i_{1}+\cdots+i_{k}} x^{k} . \quad[2 \text { points }]
$$

Replacing $\left(i_{1}, \ldots, i_{k}\right)$ by $\left(j_{1}, \ldots, j_{k}\right)$ with $j_{t}=i_{t}-t+1$, we get

$$
(1+x)(1+q x) \cdots\left(1+q^{n-1} x\right)=\sum_{k=0}^{n} q^{\binom{k}{2}} \sum_{0 \leq j_{1} \leq \cdots \leq j_{k} \leq n-k} q^{j_{1}+\cdots+j_{k}} x^{k}
$$

Since

$$
\sum_{0 \leq j_{1} \leq \cdots \leq j_{k} \leq n-k} q^{j_{1}+\cdots+j_{k}}=\sum_{\lambda \subseteq\left((n-k)^{k}\right)} q^{|\lambda|}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q},
$$

we obtain the first identity.
For the second identity, note that

$$
\frac{1}{(1-x)(1-q x) \cdots\left(1-q^{n-1} x\right)}=\sum_{k=0}^{\infty} \sum_{0 \leq i_{1} \leq \cdots \leq i_{k} \leq n-1} q^{i_{1}+\cdots+i_{k}} x^{k} . \quad[2 \text { points }]
$$

Since

$$
\sum_{0 \leq i_{1} \leq \cdots \leq i_{k} \leq n-1} q^{i_{1}+\cdots+i_{k}}=\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q}, \quad[2 \text { points }]
$$

we obtain the second identity.

