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2 HOMEWORK

1. Homework 1 (Due: Sep 21)

Problem 1.1. Let L be a positive-definite linear functional with monic OPS {Pn(x)}n≥0. Prove
the following extremal property: for any monic real polynomial π(x) ̸= Pn(x) of degree n,

L(Pn(x)
2) < L(π(x)2).

Solution. Let π(x) =
∑n

k=0 akPk(x). Since both π(x) and Pn(x) are monic, we have an = 1
[3 points]. Then

L(π(x)2) =
n∑

k=0

a2kL(Pk(x)
2) [4 points]

≥ a2nL(Pn(x)
2) = L(Pn(x)

2) [3 points].

□

Problem 1.2. Let L be a linear functional such that ∆n ̸= 0 for all n ≥ 0. Prove that if π(x) is
a polynomial such that L(xkπ(x)) = 0 for all k ≥ 0, then π(x) = 0.

Solution. Since ∆n ̸= 0, there is a monic OPS {Pn(x)}n≥0 for L [3 points]. Let π(x) =∑n
k=0 akPk(x). Since L(xkπ(x)) = 0 for all k ≥ 0, we have L(p(x)π(x)) = 0 for any polynomial

p(x) [3 points]. Then, for each 0 ≤ k ≤ n, we have 0 = L(Pk(x)π(x)) = akL(Pk(x)
2)

[2 points]. Since L(Pk(x)
2) ̸= 0, we get ak = 0 for all 0 ≤ k ≤ n [2 points]. Hence π(x) = 0.

A common mistake: It is not true in general that L(xkPn(x)) = 0 for k ̸= n. We can only
say that L(xkPn(x)) = 0 for k < n. □

Problem 1.3. The Tchebyshev polynomials of the second kind Un(x) are defined by

Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ, n ≥ 0.

(1) Prove that Un(x) is a polynomial of degree n.
(2) Prove that

Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 0,

where U−1(x) = 0 and U0(x) = 1.
(3) Prove that ∫ 1

−1

Um(x)Un(x)(1− x2)1/2dx =
π

2
δm,n.

(4) Find the 3-term recurrence for the normalized Tchebyshev polynomials of the second kind.
More precisely, find the numbers bn and λn such that

Ûn+1(x) = (x− bn)Ûn(x)− λnÛn−1(x), n ≥ 0,

where Ûn(x) is the monic polynomial that is a scalar multiple of Un(x).

Solution. (1) This follows from (2) [2 points].
(2) By the addition rule for the sine function,

sin(n+ 1)θ = sinnθ cos θ + cosnθ sin θ,

sin(n− 1)θ = sinnθ cos θ − cosnθ sin θ.

Adding the two equations and dividing both sides by sin θ, we get

Un(x) + Un−2(x) = 2xUn−1(x), n ≥ 1 [2 points].

This is equivalent to the recurrence in the problem.
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(3) By the change of variables x = cos θ, 0 ≤ θ ≤ π, with dx = − sin θdθ = −
√
1− x2dθ,∫ 1

−1

Um(x)Un(x)(1− x2)1/2dx

=

∫ π

0

sin(m+ 1)θ sin(n+ 1)θdθ [2 points]

=
1

2

∫ π

0

(cos(m− n)θ + cos(m+ n)θ) dθ [2 points]

=
π

2
δm,n.

(4) Since degUn(x) = 2n for all n ≥ 0, we have Ûn(x) = 2−nUn(x). Dividing both sides of the
recurrence in (2) by 2n+1, we obtain bn = 0 and λn = 1/4 [2 points]. □

Problem 1.4. Let {Pn(x)}n≥0 be the monic OPS for a linear functional L with three-term
recurrence

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 0.

(1) Prove that

Pn(x) =

∣∣∣∣∣∣∣∣∣∣
x− b0 1 0

λ1 x− b1
. . .

. . .
. . . 1

0 λn−1 x− bn−1

∣∣∣∣∣∣∣∣∣∣
.

(2) Prove that

Pn(x) =

∣∣∣∣∣∣∣∣∣∣
x− b0

√
λ1 0

√
λ1 x− b1

. . .

. . .
. . .

√
λn−1

0
√

λn−1 x− bn−1

∣∣∣∣∣∣∣∣∣∣
.

(3) Using (2) prove that if bn ∈ R and λn > 0 for all, then Pn(x) has real roots only.

Solution. (1) Let Qn(x) be the determinant on the right-hand side. Expanding the determinant
along the last row, we obtain the recursion

Qn(x) = (x− bn−1)Qn−1(x)− λn−1Qn−2(x) [2 points].

Since Pn(x) and Qn(x) satisfy the same recurrence with with the initial conditions Q0(x) = 1 and
Q1(x) = x− b0, we obtain that Qn(x) = Pn(x).

(2) Let An = (αi,j) be the matrix in (1) and let Bn be the matrix in (2). Then it suffices to
find an invertible diagonal matrix D = diag(di) such that Bn = DAnD

−1 [3 points]. To do
this, observe that DAnD

−1 = (diαi,jd
−1
j ). Since Bn and DAnD

−1 are tri-diagonal matrices, we

have Bn = DAnD
−1 if and only if the following hold:

βi,i = diαi,id
−1
i ,(1.1)

βi,i+1 = diαi,i+1d
−1
i+1,(1.2)

βi+1,i = di+1αi+1,id
−1
i .(1.3)

Since αi,i+1 = 1 and βi,i+1 =
√
λi+1, (1.2) is equivalent to di+1 = di/

√
λi+1. Indeed, if we set

d0 = 1 and di+1 = di/
√
λi+1, then all three conditions above hold [3 points].

Note: Alternatively, it can be proved directly that the right-hand side of the equation satisfies
the same recurrence as Pn(x).

(3) Since the zeros of Pn(x) are the eigenvalues of a real symmetric matrix, they are real
[2 points]. □
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2. Homework 2 (Due: Oct 5)

Problem 2.1. Let id be the identity permutation.

(1) Find the number of permutations π ∈ S6 such that π2 = id.
(2) Find the number of permutations π ∈ S6 such that π3 = id.
(3) Find the number of permutations π ∈ S6 such that π4 = id.
(4) Find the number of permutations π ∈ S6 such that π5 = id.
(5) Find the number of permutations π ∈ S6 such that π6 = id.

Solution. We have πk = id if and only if every cycle of π is of length divisible by k. For example,
if π6 = id, then the decreasing sequence of the lengths of cycles of π must be (6), (3, 3), (3, 2, 1),
(3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1). The number of such permutations is 5!,(
6
3

)
1
22

2,
(
6
3

)(
3
2

)
·2,

(
6
3

)
·2, 5 ·3,

(
6
4

)
·3,

(
6
2

)
, 1, respectively. In this way we get the answers as follows.

(1) 76 [2 points]
(2) 81 [2 points]
(3) 256 [2 points]
(4) 145 [2 points]
(5) 396 [2 points]

□

Problem 2.2. Let c1, . . . , cn be a sequence of nonnegative integers such that
∑n

i=1 ici = n. Show
that the number of permutations π ∈ Sn with ci cycles of length i for all i = 1, . . . , n is

n!∏n
i=1 i

cici!
.

Solution. Let X be the set of such permutations. We construct a map ϕ : Sn → X as follows.
Given σ = σ1 · · ·σn ∈ Sn, let ϕ(σ) be the permutation whose cycle notation is obtained from the
word σ1 · · ·σn by placing parentheses so that the first c1 cycles are of length 1, the next c2 cycles
are of length 2, and so on [3 points]. By the construction, this gives a map ϕ : Sn → X.

For any π ∈ X, there are ci! ways to arrange its ci cycles and i ways to cyclically shift each
each of these cycles. Therefore, there are

∏n
i=1 i

cici! permutations σ ∈ Sn whose image under ϕ
is π [4 points]. This shows that |X| = |Sn|/

∏n
i=1 i

cici! as desired [3 points]. □

Problem 2.3. For π ∈ Sn, let ℓ(π) be the smallest number of simple transpositions whose product
is π. Prove that ℓ(π) = inv(π).

Solution. Suppose that π = s1 · · · sr for some simple transpositions si’s. Since multipling a simple
transposition increases or decreases the number of inversions by 1, we have r ≥ inv(π) [3 points].
Hence ℓ(π) ≥ inv(π) [2 points].

On the other hand, we can find an expression π = s1 · · · sr with r = inv(π) by sorting π =
π1 · · ·πn [3 points] because multiplying the simple transposition (i, i + 1) to the right of π =
π1 · · ·πn gives

π(i, i+ 1) = π1 · · ·πi−1πi+1πiπi+1 · · ·πn.

This implies ℓ(π) ≤ inv(π) [2 points]. Thus, ℓ(π) = inv(π). □

Problem 2.4. Prove that∑
π∈Sn

qinv(π) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Solution. We proceed by induction on n. If n = 1, it is true. Let n ≥ 2 and suppose the statement
holds for n − 1. Every π ∈ Sn is obtained from σ ∈ Sn−1 by inserting n after j integers from
the beginning for some 0 ≤ j ≤ n − 1 [3 points]. This construction gives inv(π) = inv(σ) + j
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[3 points]. Thus∑
π∈Sn

qinv(π) =
∑

σ∈Sn−1

n−1∑
j=0

qinv(σ)+j =
∑

σ∈Sn−1

qinv(σ)(1 + q + · · ·+ qn−1) [2 points]

= (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1) [2 points].

Thus the statement is also true for n and we are done. □
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3. Homework 3 (Due: Oct 19)

Problem 3.1. Suppose that {Pn(x)}n≥0 is a monic OPS for a linear functional L with L(1) = 1
given by P−1(x) = 0, P0(x) = 1, and for n ≥ 0,

Pn+1(x) = (x− n)Pn(x)− nPn−1(x).

Compute the following.

(1) L(x3)
(2) L(P10(x)P10(x))
(3) L(x3P10(x)P12(x))

Solution. We can compute these quantities using

L(xnPr(x)Ps) = λ1 · · ·λs

∑
π∈Motz((0,r)→(n,s))

wt(π).

(1) L(x3) = 1 [3 points]
(2) L(P10(x)P10(x)) = 10! [3 points]
(3) L(x3P10(x)P12(x)) = 33 · 12! [4 points]

□

Problem 3.2. A left-to-right minimum of a permutation π = π1 · · ·πn is a number πi such that
πi = min{π1, . . . , πi}. Let LRmin(π) denote the number of left-to-right minima in π. For example,
if π = 6741352, then the left-to-right minima are 6, 4, 1, hence LRmin(π) = 3. Prove that∑

π∈Sn

αcycle(π) =
∑

π∈Sn

αLRmin(π).

Solution. We can uniquely write the cycles of a permutation π ∈ Sn so that each cycle starts with
its smallest element and the cycles are listed in the decreasing order of their smallest elements
[3 points]. For example,

π = (5, 11)(3)(1, 4, 2, 9, 10, 7, 6, 8).

Let π̂ be the permutation obtained from this list of cycles by deleting the parentheses [4 points].
In the example above,

π̂ = 511 3 1 4 2 9 10 7 6 8.

Then the first elements of the cycles of π are the left-to-right minima of π̂ [3 points]. Since π 7→ π̂
is a bijection we have ∑

π∈Sn

αcycle(π) =
∑

π∈Sn

αLRmin(π). □

Problem 3.3. Suppose that {Pn(x)}n≥0 is a monic OPS given by P−1(x) = 0, P0(x) = 1, and
for n ≥ 0,

Pn+1(x) = (x− 1)Pn(x)− nPn−1(x).

Prove that µn is equal to the number of involutions in Sn. (An involution is a permutation π
such that π2 is the identity map.)

Solution. Recall the bijection ϕ : CHn → Πn between the Charlier histories of length n and the
set partitions of [n] for the case bn = n + 1 and λn = n [3 points]. If bn = 1 and λn = n, then
by restricting this map to the Charlier histories with 0 label for every horizontal step, the images
are the set partitions in which every block is of size 1 or 2 [4 points]. Then we can identify such
a set partition as an involution [3 points]. This implies the statement in the problem. □

Problem 3.4. Suppose that {Pn(x)}n≥0 is a monic OPS given by P−1(x) = 0, P0(x) = 1, and
for n ≥ 0,

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x),

where λn ̸= 0 for all n ≥ 1.
Using the fact µn =

∑
π∈Motzn

wt(π), prove that µ2n+1 = 0 for all n ≥ 0 if and only if bn = 0
for all n ≥ 0.
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Solution. (⇐): Suppose bn = 0 for all n ≥ 0. Then µn is the generating function for Dyck paths,
hence µ2n+1 = 0 [3 points].

(⇒): Suppose that µ2n+1 = 0 for all n ≥ 0. Then we prove bn = 0 for all n ≥ 0 by induction
on n. Since µ1 = b0, we have b0 = 0 [3 points]. Suppose that bi = 0 for all 0 ≤ i < n. Then

µ2n+1 =
∑

Motz2n+1

wt(π) = bnλ1 · · ·λn [4 points]

because all Motzkin paths in Motz2n+1 except UnHDn has weight 0. Since µ2n+1 = 0 and λi ≤ 0
for all i, we obtain bn = 0. By induction, bn = 0 for all n ≥ 0. □
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4. Homework 4 (Due: Nov 9)

Problem 4.1. Let G be the directed graph whose vertex set V and (directed) edge set E are
given by

V = {(i, j) : 0 ≤ i, j ≤ 5},
E = {(i, j) → (i+ 1, j) : 0 ≤ i ≤ 4, 0 ≤ j ≤ 5} ∪ {(i, j) → (i, j + 1) : 0 ≤ i ≤ 5, 0 ≤ j ≤ 4}.

(1) Find the number of paths from (0, 0) to (5, 5).
(2) Find the number of paths from (0, 0) to (5, 5) that do not visit (3, 3).
(3) Find the number of paths from (0, 0) to (5, 5) that do not visit any of (1, 3), (3, 3), (4, 3).

(Write you answer as a single determinant.)
(4) Let A = (A1, A2, A3) and B = (B1, B2, B3), where A1 = (0, 0), A2 = (1, 0), A3 = (2, 0),

B1 = (5, 5), B2 = (5, 4), and B3 = (5, 3). Find the cardinality of the set NI(A → B).
(Write you answer as a single determinant.)

Solution. (1)
(
10
5

)
[2 points]

(2)
(
10
5

)
−
(
6
2

)(
4
2

)
[2 points]

(3) Let A1 = (0, 0), B1 = (5, 5) and A2 = B2 = (1, 3), A3 = B3 = (3, 3), A4 = B4 = (4, 3)
[2 points]. Then by the LGV lemma, the answer is

det


(
10
5

) (
4
1

) (
6
3

) (
7
3

)(
6
2

)
1

(
2
0

) (
3
0

)(
4
2

)
0 1

(
1
0

)(
3
2

)
0 0 1

 . [2 points]

(4) By the LGV lemma, the answer is

det


(
10
5

) (
9
4

) (
8
3

)(
9
4

) (
8
4

) (
7
3

)(
8
3

) (
7
3

) (
6
3

)
 . [2 points]

□

Problem 4.2. Evaluate the determinants. Here, Cn is the nth Catalan number.

(1) det (Ci+j)
2023
i,j=0

(2) det
((

2i+2j
i+j

))2023

i,j=0

Solution. (1) Consider the directed graph G = (V,E) where V = Z × Z≥0 and edges consisting
of up steps U = (1, 1) and down steps D = (1,−1). Let A = (A0, A1, . . . , A2023) and B =
(B0, B1, . . . , B2023), where Ai = (−i, 0) and Bi = (i, 0) [2 points]. Then

det (Ci+j)
2023
i,j=0 = |NI(A → B)|. [2 points]

Since there is only one element in NI(A → B), the answer is 1.
(2) We have shown that (

2n

n

)
=

∑
π∈Dyckn

2a(π),

where a(π) is the number of down steps in π touching the x-axis [2 points]. Define an edge-weight
w : E → K for the graph G above by w(U) = 1 and w(D) = 2 if D has starting height 1 and
w(D) = 1 otherwise. Then

det

((
2i+ 2j

i+ j

))2023

i,j=0

=
∑

p∈NI(A→B)

sgn(p)w(p). [2 points]

Since there is only one element in NI(A → B), which has 2023 down steps with starting height 1
in total, the answer is 22023 [2 points]. □
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Problem 4.3. Let {Pn(x)}n≥0 be a monic OPS satisfying

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x),

and let µn be the nth moment. Suppose that λn > 0 for all n ≥ 1 and bn ≥ 0 for all n ≥ 0. Prove
or disprove each statement.

(1) For all n ≥ 0,
det(µi+j)

n
i,j=0 > 0.

(2) For all n ≥ 0,
det(µ2i+2j)

n
i,j=0 > 0.

(3) If bk = 0 for all k ≥ 0, then for all n ≥ 0,

det(µ2i+2j)
n
i,j=0 > 0.

(4) Let {rn}n≥0 and {sn}n≥0 be strictly increasing sequences of nonnegative even integers. If
bk = 0 for all k ≥ 0, then for all n ≥ 0,

det(µri+sj )
n
i,j=0 > 0.

Solution. (1) We have

det(µi+j)
n
i,j=0 = λn

1λ
n−1
2 · · ·λ1

n > 0. [2 points]

(2) Since there are figure “X”’s, we cannot determine the positivity of this determinant using
the LGV lemma [2 points]. (I do not know if this is positive or not. Please let me know if you
have a proof or a counterexample.)

(3) We have

det(µ2i+2j)
n
i,j=0 = ∆n(2) = (λ1λ2)

n(λ3λ4)
n−1 · · · (λ2n−1λ2n)

1 > 0. [2 points]

(4) Let A = (A0, A1, . . . , An) and B = (B0, B1, . . . , Bn), where Ai = (−ri, 0) and Bi = (si, 0).
Then

det(µri+sj )
n
i,j=0 =

∑
p∈NI(A→B)

sgn(p)w(p),

where p = (p0, . . . , pn) is a nonintersecting n-path such that each pi is a Dyck path. Since ri and
sj are even, for every point (a, b) of a path pi, a+ b is even [2 points]. This means that there is
no figure “X” among pi’s. Therefore, each pi is a path from Ai to Bi and sgn(p) = 1. Hence,

det(µri+sj )
n
i,j=0 =

∑
p∈NI(A→B)

wt(p) > 0. [2 points] □

Problem 4.4. Prove the following two q-binomial theorems:

(1 + x)(1 + qx) · · · (1 + qn−1x) =

n∑
k=0

q(
k
2)
[
n

k

]
q

xk,

1

(1− x)(1− qx) · · · (1− qn−1x)
=

∞∑
k=0

[
n+ k − 1

k

]
q

xk.

Solution. We have

(1 + x)(1 + qx) · · · (1 + qn−1x) =

n∑
k=0

∑
0≤i1<···<ik≤n−1

qi1+···+ikxk. [2 points]

Replacing (i1, . . . , ik) by (j1, . . . , jk) with jt = it − t+ 1, we get

(1 + x)(1 + qx) · · · (1 + qn−1x) =

n∑
k=0

q(
k
2)

∑
0≤j1≤···≤jk≤n−k

qj1+···+jkxk. [2 points]

Since ∑
0≤j1≤···≤jk≤n−k

qj1+···+jk =
∑

λ⊆((n−k)k)

q|λ| =

[
n

k

]
q

, [2 points]
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we obtain the first identity.
For the second identity, note that

1

(1− x)(1− qx) · · · (1− qn−1x)
=

∞∑
k=0

∑
0≤i1≤···≤ik≤n−1

qi1+···+ikxk. [2 points]

Since ∑
0≤i1≤···≤ik≤n−1

qi1+···+ik =

[
n+ k − 1

k

]
q

, [2 points]

we obtain the second identity. □
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