HOMEWORK

Contents

1. Homework 1 (Due: Sep 21) 2
2. Homework 2 (Due: Oct 5) $\quad 3$
3. Homework 3 (Due: Oct 19) 4
4. Homework 4 (Due: Nov 9) 5

1. Homework 1 (Due: Sep 21)

Problem 1.1. Let \mathcal{L} be a positive-definite linear functional with monic OPS $\left\{P_{n}(x)\right\}_{n \geq 0}$. Prove the following extremal property: for any monic real polynomial $\pi(x) \neq P_{n}(x)$ of degree n,

$$
\mathcal{L}\left(P_{n}(x)^{2}\right)<\mathcal{L}\left(\pi(x)^{2}\right)
$$

Problem 1.2. Let \mathcal{L} be a linear functional such that $\Delta_{n} \neq 0$ for all $n \geq 0$. Prove that if $\pi(x)$ is a polynomial such that $\mathcal{L}\left(x^{k} \pi(x)\right)=0$ for all $k \geq 0$, then $\pi(x)=0$.

Problem 1.3. The Tchebyshev polynomials of the second kind $U_{n}(x)$ are defined by

$$
U_{n}(x)=\frac{\sin (n+1) \theta}{\sin \theta}, \quad x=\cos \theta, \quad n \geq 0
$$

(1) Prove that $U_{n}(x)$ is a polynomial of degree n.
(2) Prove that

$$
U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x), \quad n \geq 0
$$

where $U_{-1}(x)=0$ and $U_{0}(x)=1$.
(3) Prove that

$$
\int_{-1}^{1} U_{m}(x) U_{n}(x)\left(1-x^{2}\right)^{1 / 2} d x=\frac{\pi}{2} \delta_{m, n}
$$

(4) Find the 3 -term recurrence for the normalized Tchebyshev polynomials of the second kind. More precisely, find the numbers b_{n} and λ_{n} such that

$$
\hat{U}_{n+1}(x)=\left(x-b_{n}\right) \hat{U}_{n}(x)-\lambda_{n} \hat{U}_{n-1}(x), \quad n \geq 0
$$

where $\hat{U}_{n}(x)$ is the monic polynomial that is a scalar multiple of $U_{n}(x)$.
Problem 1.4. Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be the monic OPS for a linear functional \mathcal{L} with three-term recurrence

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x), \quad n \geq 0 .
$$

(1) Prove that

$$
P_{n}(x)=\left|\begin{array}{cccc}
x-b_{0} & 1 & & 0 \\
\lambda_{1} & x-b_{1} & \ddots & \\
& \ddots & \ddots & 1 \\
0 & & \lambda_{n-1} & x-b_{n-1}
\end{array}\right|
$$

(2) Prove that

$$
P_{n}(x)=\left|\begin{array}{cccc}
x-b_{0} & \sqrt{\lambda_{1}} & & 0 \\
\sqrt{\lambda_{1}} & x-b_{1} & \ddots & \\
& \ddots & \ddots & \sqrt{\lambda_{n-1}} \\
0 & & \sqrt{\lambda_{n-1}} & x-b_{n-1}
\end{array}\right|
$$

(3) Using (2) prove that if $b_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ for all, then $P_{n}(x)$ has real roots only.
2. Homework 2 (Due: Oct 5)

Problem 2.1. Let $i d$ be the identity permutation.
(1) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{2}=i d$.
(2) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{3}=i d$.
(3) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{4}=i d$.
(4) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{5}=i d$.
(5) Find the number of permutations $\pi \in \mathfrak{S}_{6}$ such that $\pi^{6}=i d$.

Problem 2.2. Let c_{1}, \ldots, c_{n} be a sequence of nonnegative integers such that $\sum_{i=1}^{n} i c_{i}=n$. Show that the number of permutations $\pi \in \mathfrak{S}_{n}$ with c_{i} cycles of length i for all $i=1, \ldots, n$ is

$$
\frac{n!}{\prod_{i=1}^{n} i^{c_{i}} c_{i}!}
$$

Problem 2.3. For $\pi \in \mathfrak{S}_{n}$, let $\ell(\pi)$ be the smallest number of simple transpositions whose product is π. Prove that $\ell(\pi)=\operatorname{inv}(\pi)$.

Problem 2.4. Prove that

$$
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\pi)}=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)
$$

3. Homework 3 (Due: Oct 19)

Problem 3.1. Suppose that $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a monic OPS for a linear functional \mathcal{L} with $\mathcal{L}(1)=1$ given by $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=(x-n) P_{n}(x)-n P_{n-1}(x) .
$$

Compute the following.
(1) $\mathcal{L}\left(x^{3}\right)$
(2) $\mathcal{L}\left(P_{10}(x) P_{10}(x)\right)$
(3) $\mathcal{L}\left(x^{3} P_{10}(x) P_{12}(x)\right)$

Problem 3.2. A left-to-right minimum of a permutation $\pi=\pi_{1} \cdots \pi_{n}$ is a number π_{i} such that $\pi_{i}=\min \left\{\pi_{1}, \ldots, \pi_{i}\right\}$. Let $\operatorname{LRmin}(\pi)$ denote the number of left-to-right minima in π. For example, if $\pi=6741352$, then the left-to-right minima are $6,4,1$, hence $\operatorname{LRmin}(\pi)=3$. Prove that

$$
\sum_{\pi \in \mathfrak{S}_{n}} \alpha^{\operatorname{cycle}(\pi)}=\sum_{\pi \in \mathfrak{S}_{n}} \alpha^{\operatorname{LRmin}(\pi)}
$$

Problem 3.3. Suppose that $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a monic OPS given by $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=(x-1) P_{n}(x)-n P_{n-1}(x) .
$$

Prove that μ_{n} is equal to the number of involutions in \mathfrak{S}_{n}. (An involution is a permutation π such that π^{2} is the identity map.)
Problem 3.4. Suppose that $\left\{P_{n}(x)\right\}_{n \geq 0}$ is a monic OPS given by $P_{-1}(x)=0, P_{0}(x)=1$, and for $n \geq 0$,

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

where $\lambda_{n} \neq 0$ for all $n \geq 1$.
Using the fact $\mu_{n}=\sum_{\pi \in \operatorname{Motz}_{n}} \operatorname{wt}(\pi)$, prove that $\mu_{2 n+1}=0$ for all $n \geq 0$ if and only if $b_{n}=0$ for all $n \geq 0$.

4. Homework 4 (Due: Nov 9)

Problem 4.1. Let G be the directed graph whose vertex set V and (directed) edge set E are given by
$V=\{(i, j): 0 \leq i, j \leq 5\}$,
$E=\{(i, j) \rightarrow(i+1, j): 0 \leq i \leq 4,0 \leq j \leq 5\} \cup\{(i, j) \rightarrow(i, j+1): 0 \leq i \leq 5,0 \leq j \leq 4\}$.
(1) Find the number of paths from $(0,0)$ to $(5,5)$.
(2) Find the number of paths from $(0,0)$ to $(5,5)$ that do not visit $(3,3)$.
(3) Find the number of paths from $(0,0)$ to $(5,5)$ that do not visit any of $(1,3),(3,3),(4,3)$. (Write you answer as a single determinant.)
(4) Let $\boldsymbol{A}=\left(A_{1}, A_{2}, A_{3}\right)$ and $\boldsymbol{B}=\left(B_{1}, B_{2}, B_{3}\right)$, where $A_{1}=(0,0), A_{2}=(1,0), A_{3}=(2,0)$, $B_{1}=(5,5), B_{2}=(5,4)$, and $B_{3}=(5,3)$. Find the cardinality of the set $\mathrm{NI}(\boldsymbol{A} \rightarrow \boldsymbol{B})$. (Write you answer as a single determinant.)

Problem 4.2. Evaluate the determinants. Here, C_{n} is the nth Catalan number.
(1) $\operatorname{det}\left(C_{i+j}\right)_{i, j=0}^{2023}$
(2) $\operatorname{det}\left(\binom{2 i+2 j}{i+j}\right)_{i, j=0}^{2023}$

Problem 4.3. Let $\left\{P_{n}(x)\right\}_{n \geq 0}$ be a monic OPS satisfying

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x),
$$

and let μ_{n} be the nth moment. Suppose that $\lambda_{n}>0$ for all $n \geq 1$ and $b_{n} \geq 0$ for all $n \geq 0$. Prove or disprove each statement.
(1) For all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{i+j}\right)_{i, j=0}^{n}>0
$$

(2) For all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{2 i+2 j}\right)_{i, j=0}^{n}>0
$$

(3) If $b_{k}=0$ for all $k \geq 0$, then for all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{2 i+2 j}\right)_{i, j=0}^{n}>0
$$

(4) Let $\left\{r_{n}\right\}_{n \geq 0}$ and $\left\{s_{n}\right\}_{n \geq 0}$ be strictly increasing sequences of nonnegative even integers. If $b_{k}=0$ for all $k \geq 0$, then for all $n \geq 0$,

$$
\operatorname{det}\left(\mu_{r_{i}+s_{j}}\right)_{i, j=0}^{n}>0
$$

Problem 4.4. Prove the following two q-binomial theorems:

$$
\begin{aligned}
& (1+x)(1+q x) \cdots\left(1+q^{n-1} x\right)=\sum_{k=0}^{n} q^{\binom{k}{2}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} x^{k} \\
& \frac{1}{(1-x)(1-q x) \cdots\left(1-q^{n-1} x\right)}=\sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]_{q} x^{k} .
\end{aligned}
$$

