Ch. Moments of classical $\$ 5.1$. Tchebysher polynomials. orthogonal polynomials.

Note There are several ways to define OPS.
(1) colts $a_{n, k}$ of $p_{n}(x)=\sum_{k=0}^{n} a_{n}, x^{k}$
(2) generating function

$$
\begin{aligned}
& \sum_{n \geqslant 0} P_{n}(x) t^{n} \text { or } \sum_{n \geqslant 0} P_{n} P_{n}(x) \frac{t^{n}}{n!} \\
& \text { (explinaran) }
\end{aligned}
$$

(3) moments μ_{n}.
(4) 3 -term rec. coifs b_{n}, λ_{n}

Recall The Tchebysher poly of and kind one defined by

$$
u_{n}(x)=\frac{\sin (m+1) \theta}{\sin \theta}, x=\cos \theta, n \geqslant 0 .
$$

$U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x) \quad n \geqslant 0$ $u_{-1}(x)=0, u_{0}(x)=1$.
we know from calcalice

$$
\int_{-1}^{1} u_{m}(x) u_{n}(x)\left(1-2 c^{2}\right)^{1 / 2} d x=\frac{\pi}{2} \delta_{m, n}
$$

$\left\{U_{n}(x)\right\}_{n \geqslant 0}$ is an OPS for R where

$$
\mathscr{L}(f(x))=\frac{2}{\pi} \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{1 / 2} d x
$$

$$
\left(p_{n+1}=\left(x-b_{n}\right) p_{n}-\lambda_{n} P_{n-1}\right)
$$

$$
(L(1)=1) .
$$

$U_{n}(x)$ has coelf $2^{n}, n \geqslant 0$. monic Tokebysher
$\hat{u}_{n}(x)=2^{-n} U_{n}(x) \quad(n \geqslant 0)$.
If we diuide $3-r . r$ for U_{n} by 2^{n+1}

$$
\begin{aligned}
& \Rightarrow \widehat{u}_{n+1}(x)=x \hat{u}_{n}(x)-\frac{1}{4} \hat{u}_{n-1}(x) \\
& b_{n}=0, \lambda_{n}=\frac{1}{4} .
\end{aligned}
$$

$\left\{\hat{u}_{n}(x)\right\}$ is OPS for \mathcal{L}

$$
\mu_{n}=\mathscr{L}\left(x^{n}\right)=\frac{2}{\pi} \int_{-1}^{1} x^{n}\left(1-x^{2}\right)^{\frac{1}{2}} d x
$$

$$
\Rightarrow \mu_{2 n}=\frac{1}{4^{n}} C_{n}, \mu_{2 n+1}=0 .
$$

\widetilde{L} catalam $\#=\frac{1}{n+1}\binom{2 n}{n}$.
Recall

$$
\mu_{n}=\sum_{\pi \in M_{0} t_{n}} \omega t(\pi)
$$

$\mu_{n}=\sum_{\pi \in D y c k_{n}}\left(\frac{1}{4}\right)^{\frac{n}{2}}$
$\Rightarrow \mu_{2 n}=\sum_{\pi \in D y c k_{2 n}} \frac{1}{4^{n}}, \mu_{2 n+1}=0$ $=C_{n} / 4^{n}$

The Tchehysher poly of 1 st kind

$$
\begin{aligned}
& \operatorname{Tn}(x)=\cos n \theta, \quad x=\cos \theta \\
& \int_{-1}^{1} T_{m}(x) T_{n}(x)\left(1-x^{2}\right)^{-1 / 2} d x=\pi \delta_{m, n}
\end{aligned}
$$

$\Rightarrow\left\{T_{n}(x)\right\}_{n \geqslant 0}$ is OPS for \mathcal{L}

$$
\begin{aligned}
& \mathcal{L}(f(x)):=\frac{1}{\pi} \int_{-1}^{1} f(x)\left(1-x^{2}\right)^{-\frac{1}{2}} d x \\
& \mu_{n}=\mathcal{L}\left(x^{n}\right)=\frac{1}{\pi} \int_{-1}^{1} x^{n}\left(1-x^{2}\right)^{-\frac{1}{2}} d x
\end{aligned}
$$

Using calculus,

$$
\mu_{2 n}=\frac{1}{4^{n}}\binom{2 n}{n}, \quad \mu_{2 n+1}=0
$$

The manic Tchehysher 1st kind

$$
\hat{T}_{0}(x)=1, \quad \hat{T}_{n}(x)=2^{1-n} T_{n}(x) \quad(n \geqslant 1)
$$

Recall

$$
\begin{aligned}
& \hat{T}_{n+1}(x)=\left(x-b_{n}\right) \hat{T_{n}}(x)-\lambda_{n} \hat{T_{n-1}}(x) \\
& b_{n}=0, \quad \lambda_{n}= \begin{cases}\frac{1}{2} & \text { if } n=1 \\
\frac{1}{\varphi} & \text { if } n \geqslant 2\end{cases}
\end{aligned}
$$

$$
\mu_{n}=\sum_{\pi \in M_{0} t_{n}} w t(\pi)
$$

$\mu_{2 n+1}=0 \quad(\because$ no horizontal stops $)$.

$$
\mu_{2 n}=\sum_{\pi \in D_{y c k_{2 n}}}\left(\frac{1}{4}\right)^{n} \cdot 2^{a(\pi)}
$$

$a(\pi)=$ \# down steps touching

$$
x \text {-axis. }
$$

egg.

$$
\pi=
$$

A colored buck path means
a byck path where every down step touching $x-a \times r s$ may or may not be

$$
a(\pi)=3
$$

$$
\cot (\pi)=\left(\frac{1}{4}\right)^{n} \cdot 2^{a(\pi)}
$$

We need to show

$$
\begin{aligned}
& \mu_{2 n}=\frac{1}{4^{n}}\binom{m}{n} \stackrel{?}{=} \sum_{\pi \in \text { eyck }}^{2 n}\left(\frac{1}{4}\right)^{n} 2^{a(\pi)} \\
& \stackrel{\text { Claim }}{\pi \in D y c k_{2 n}} 2^{a(\pi)}=\binom{2 n}{n} .
\end{aligned}
$$

Pf) $\sum_{i \in D} 2^{a(\pi)}=\#$ colo red

\# paths from $(0,0)$ to $(2 n, n)$ $\pi \in D_{y c k}{ }_{2 n}$ byck path byck paths from $(0,0)$ to $(2 n, 0)$. $=\binom{2 n}{n}$
\$5.2. Hermite polynomails
Def) The Hermite polynomials $H_{n}(x)$ are defined by $H_{-1}(x)=0, H_{0}(x)=1$,
(1) $\cdots H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \quad n \geqslant 0$.
lead coeff of $H_{n}(x)$ is 2^{n}.
Define $\hat{H}_{n}(x)=2^{-n} H_{n}(x)$.
Divide (1) dy 2^{n+1}

$$
\hat{H}_{n+1}(x)=x \hat{H}_{n}(x)-\frac{n}{2} \hat{H}_{n-1}(x) .
$$

Lem (Rescaling OPS)
Suppose $\left\{P_{n}(x)\right\}_{n \geqslant 0}$ is a monic OPS with

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x) .
$$

Let $\widetilde{P}_{n}(x)=a^{n} P_{n}(x / a)$.
Then

$$
\widetilde{P_{n+1}}(x)=\left(x-a b_{n}\right) \widetilde{P_{n}}(x)-a^{2} \lambda_{n} \widetilde{P}_{n-1}(x) .
$$

Pf) Subst. $x \mapsto x / a$ \& must a^{n+1}.
Def). The rescaled Hermite poly $\tilde{H}_{n}(x)$ are $\tilde{H}_{n}(x)=\sqrt{2}^{n} \hat{H}_{n}(x / \sqrt{2})$.

$$
\begin{gathered}
\widetilde{H}_{n+1}(x)=x \widetilde{H}_{n}(x)-n \widetilde{H}_{n-1}(x) \\
\widetilde{H}_{-1}=0, \widetilde{H}_{0}=1
\end{gathered}
$$

The moments of $\left\{\widetilde{F}_{n}(x)\right\}_{n \geqslant 0}$ are Def). A Hermite history is a buck path

$$
\begin{aligned}
& \mu_{n}=\sum_{\pi \in M_{0} t_{n}} w t(\pi) . \\
& b_{n}=0, \quad \lambda_{n}=n . \\
& \Rightarrow \mu_{2 n+1}=0 . \\
& \mu_{2 n}=\sum_{\pi \in D_{y}\left(k_{2 n}\right.} w t(\pi) . \\
&(=(2 n-1)!!)
\end{aligned}
$$ where every down step starting at ht k is labeled by an integer in $\{0,1, \ldots, k-1\}$.

$H_{2 n}=\{$ Hermite histories from $(0,0)$ to $(2 n, 0)$?

$$
\Rightarrow \mu_{2 n}=\left|H_{2 n}\right|
$$

$\because \omega t(\pi)=$ \# Hermite histories underlying π.
let $C M_{2 n}=$ set of complete matchings on $[2 n]$
We know $\left|C M_{2 n}\right|=(2 n-1)!!$
Prop There is a bijection

$$
\phi: \mathrm{HH}_{2 n} \rightarrow \mathrm{CM}_{2 n}
$$

LIt of stating pt of D
pf)
= \# available openers.
Cor

$$
\overline{\mu_{2 n}}=\left|H H_{2 n}\right|=\left|C M_{2 n}\right|=(2 n-1)!!
$$

$\stackrel{1}{d}$ on [n$]$.) skep 2 openers.
classical orthogonal poly
moments μ_{n}
Hermite \#complete matchings on [n]
Charlies \# set partitions on [n]
Laguerre \# permutations [n].
Jacobi

