§7.2. The Lindstrom-Ctessel-Viennot Lemma
Def) A graph is a pair $G=(V, E)$ of sets $V$ and $E$,

$$
E \subseteq V \times V
$$

Every $v \in V$ is called a vertex " $e \in E$ " an edge.
If we say $G$ is $\frac{\text { directed }}{\left(\frac{\text { mirected }}{}\right)}$ it means $(u, v) \neq(v, u)$ as edges $((u, v)=(v, u))$
ex)


$$
\begin{aligned}
& G=(V, E) \\
& V=\{1,2,3\} \\
& E=\{(1,2),(2,3),
\end{aligned}
$$

directed.

A path from $u$ to $v$ is a seq of vertices $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ s.t.

$$
v_{0}=u, v_{n}=v
$$

$$
\left(v_{i}, v_{i+1}\right) \in E, \quad 0 \leq i \leq n-1 .
$$

ex)

$p=(1,2,5,6)$ is path from 1 to 6 .
A cycle is a path from $u$ to $u$. $(1,2,5,4,1)$ is a cycle.
If $G$ has no cycles,
$G$ is acydic.
$P(u \rightarrow v)=$ set of paths from $u$ to $v$.
An edge weight of $G=(V, E)$ is a function $\omega: E \rightarrow K$ commutative ring.
The weight of a path $p=\left(v_{0}, \ldots v_{n}\right)$ is $w(p)=w\left(v_{0}, v_{1}\right) \cdots w\left(v_{n-1}, v_{n}\right)$.
An n-path is a sequence of $n$ paths $\mathbb{P}=\left(p_{1}, \ldots, p_{n}\right)$.
Tho paths $p_{1}$ and $P_{2}$ one intersecting if they have a common vertex. otherwise, nonintersecting.
We say $\mathbb{p}=\left(p_{1}, \ldots, p_{n}\right)$ is nonintersecting
if $P_{i}$ and $P_{j}$ are nonintersecting
for all $i \neq j$.
if $P_{i}$ and $P_{j}$ are nonintersecting
for all $i \neq j$.

Ce: a directed graph with edge weight w. let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ be seq of vertices.

$$
\mathbb{B}=\left(B_{1}, \ldots B_{n}\right)
$$

$P(\mathbb{A} \rightarrow \mathbb{B})=$ set of all $n$-paths

$$
\begin{gathered}
\mathbb{P}=\left(P_{1}, \cdots P_{n}\right) \text { s.t. } \\
P_{i} \in P\left(A_{i} \rightarrow B_{\sigma(i)}\right), \quad 1 \leq i \leq n
\end{gathered}
$$ for some $\sigma \in S_{n}$.

$$
\begin{aligned}
& \operatorname{sgn}(\mathbb{P})=\operatorname{sgn}(\sigma) \\
& \omega(\mathbb{p})=\omega\left(p_{1}\right) \cdots \omega\left(p_{n}\right)
\end{aligned}
$$

$N I(A \rightarrow \mathbb{B})=$ set of all nonintersecting $n$-paths in $P(\mathbb{A} \rightarrow \mathbb{B})$.

The (Lindstrom-Gesset-Viennot Lemma. LGV lem)
$G$ : a directed acyclic graph

$$
\begin{gathered}
\text { with edge weight w. } \\
\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right), \mathbb{B}=\left(B_{1}, \ldots B_{n}\right) . \\
M=\left(M_{i j}\right)_{i_{i j}=1}^{n} \\
M_{i j}=\sum_{p \in p\left(A_{i} \rightarrow B_{j}\right)} w(p) \\
\left.\Rightarrow \operatorname{det} M=\sum_{\mathbb{P} \in N I(A \rightarrow B)} s g_{n}\right)(\mathbb{p}) w(\mathbb{P}) .
\end{gathered}
$$

ex)

$$
M=\left(M_{i j}\right)_{i_{i j}=1}^{n}=\left(\begin{array}{ll}
\binom{3}{1} & \binom{4}{2} \\
\binom{2}{0} & \binom{3}{1}
\end{array}\right)
$$

$$
\begin{aligned}
M_{i j}=\sum_{p \in P\left(A_{i} \rightarrow B_{j}\right)} w(p) & \operatorname{det} M=\operatorname{det}\left(\begin{array}{ll}
3 & 6 \\
1 & 3
\end{array}\right)=q-6=3 . \\
\Rightarrow \operatorname{det} M=\sum_{\mathbb{P} \in N I(A \rightarrow \mathbb{B})} s g_{n}(P) w(\mathbb{P}) & \\
& \text { Any } \mathbb{P} \in P(A \rightarrow \mathbb{B}),
\end{aligned}
$$



Let's count \# intersecting 2 -paths.

$$
\begin{aligned}
& P_{1} \in P\left(A_{1} \rightarrow B_{1}\right) \\
& P_{2} \in P\left(A_{2} \rightarrow B_{2}\right)
\end{aligned}
$$

Find first intersection $u$ of $p_{1}, p_{2}$
let $p_{1}=\underbrace{p_{1}^{\prime} p_{1}^{\prime \prime}}, p_{2}=p_{2}^{\prime} p_{2}^{\prime \prime}$
before $n$ after $n$

$$
\Rightarrow \quad q_{1}=p_{1}^{\prime} p_{2}^{\prime \prime}, \quad q_{2}=p_{2}^{\prime} p_{1}^{\prime \prime}
$$

p, pe with tails exchanged.

$$
\begin{aligned}
\Rightarrow & q_{1} \in P\left(A_{1} \rightarrow B_{2}\right) \\
& q_{2} \in P\left(A_{2} \rightarrow B_{1}\right)
\end{aligned}
$$

Any such $\left(q_{1}, q_{2}\right)$ intersect.
We can do the tail-exchange to get $\left(p_{1}, p_{2}\right)$ back.
This gives a bijection from intersecting $\left(p, 1, p_{2}\right)$ and $\quad P\left(A_{1} \rightarrow B_{2}\right) \times P\left(A_{2} \rightarrow A_{1}\right)$ card $=\binom{4}{2} \cdot\binom{2}{0}$
$\# N J=\binom{3}{1}\binom{3}{1}-\binom{4}{2}\binom{2}{0}$ $=\operatorname{det}\left(\begin{array}{ll}3 & \binom{4}{1} \\ 2 \\ 2 & 2 \\ 0 & \binom{3}{1}\end{array}\right)$

Proof of LGV-Lem

$$
\begin{aligned}
& \operatorname{det} M=\operatorname{det}\left(M_{i j}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i, \sigma(i)} \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} \sum_{p \in p\left(A_{i} \rightarrow B_{\sigma(i))}\right.} \omega(p) \\
& =\sum_{\mathbb{P} \in \mathbb{P}(\mathbb{A} \rightarrow \mathbb{B})} \operatorname{sgn}(\mathbb{P}) \omega(\mathbb{P}) . \\
& =\sum_{\mathbb{P} \in N I(\mathbb{A} \rightarrow \mathbb{B})} \operatorname{sgn}(\mathbb{P}) \omega(\mathbb{P}) .
\end{aligned}
$$

It is enough to find a sign-reversing \& weight-pres. involution $\phi$ on $P(\mathbb{A} \rightarrow \mathbb{B})$ with fix pt set $N I(A \rightarrow B)$.

Let $\mathbb{P}=\left(p_{1}, \ldots, p_{n}\right) \in P(A \rightarrow \mathbb{B})$, where

$$
p_{i} \in P\left(A_{i} \rightarrow B_{\sigma(i)}\right), \quad \sigma \in S_{n} .
$$

If $\mathbb{P}$ is nonintersecting, $\phi(\mathbb{P})=\mathbb{p}$.
Suppose $\mathbb{P}$ is intersecting.
Find the lexicographically smallest $(i, j)$
s.t. $P_{i}$ and $P_{j}$ intersect.
let $u$ be the first intersection pt of $P_{i}$ and $P_{j}$


$$
\phi(\mathbb{P})=\left(p_{1}, \ldots, p_{i}^{\prime}, \ldots, p_{j}^{\prime}, \ldots p_{n}\right) .
$$

Note.

$$
\begin{aligned}
& \operatorname{sgn}(\mathbb{p})=\operatorname{sgn}(\sigma) \\
& \operatorname{sgn}(\phi(\mathbb{p}))=\operatorname{sgn}(\sigma(\underline{i, j})) \\
& =-\operatorname{sgn}(\sigma) \quad \text { trans. } \\
& \Rightarrow \operatorname{sign}-\text { reversing. } \\
& w(\phi(\mathbb{p}))=w(\mathbb{P}) \quad \text { Yes. }
\end{aligned}
$$

$(\because$ Set of edges used is preserved).
$\phi$ : involution

$$
\phi(\phi(\mathbb{p}))=\mathbb{p} .
$$

Cor. $G$ : directed graph, edge weight w.

$$
\begin{aligned}
& A=\left(A_{1}, \ldots A_{n}\right), \quad B=\left(B_{1}, \ldots, B_{n}\right) . \\
& M=\left(M_{i j}\right) \quad M_{i j}=\sum_{\rho \in p\left(A_{i} \rightarrow B_{j}\right)} \omega(p) .
\end{aligned}
$$

Suppose every nonintersecting $n$-paths

$$
\mathbb{P}=\left(p_{1}, \ldots, p_{n}\right) \in P(\mathbb{A} \rightarrow \mathbb{B})
$$

satisfies $P_{i} \in P\left(A_{i} \rightarrow B_{i}\right) . \forall_{i}$.

$$
\Rightarrow \operatorname{det} M=\sum_{\mathbb{P} \in N I(\mathbb{A} \rightarrow \mathbb{B})} \omega(\mathbb{P}) \text {. }
$$

In panticulon, if $\omega(e)=1$,

$$
\operatorname{det} M=|N I(A \rightarrow B)|
$$



$$
\begin{aligned}
& \operatorname{det} M=\operatorname{det}\left(\begin{array}{ll}
\binom{4}{2} & \binom{6}{3} \\
\binom{2}{1} & \binom{4}{2}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
6 & 20 \\
2 & 6
\end{array}\right)=36-40=-4 \text {. }
\end{aligned}
$$

$N \mathcal{N}(\mathbb{A} \rightarrow \mathbb{B})$


Rem what if $A_{i}=A_{j}$ (or $B_{i}=B_{j}$ ).

$$
\operatorname{det} M=\sum_{p \in N I} w(p) \operatorname{sgn}(p)=0
$$

$\rightarrow$ also seen to be 0 since row $i=$ row $j$.

Rem What if $A_{i}=B_{j}$ ?

$$
P\left(A_{i} \rightarrow B_{j}\right)=\left\{\left(A_{i}\right)\right\}
$$



In this case all other paths in $\mathbb{P} \in N I(\mathbb{A} \rightarrow \mathbb{B})$ must avoid $A_{i}$.
ex) $G:$ directed graph

$$
\begin{aligned}
& V=\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}\right\} . \\
& E=\left\{\left(A_{i}, B_{j}\right): 1 \leq i, j \leq n\right\} .
\end{aligned}
$$



$$
\begin{aligned}
& P\left(A_{i} \rightarrow B_{j}\right)=\left\{\left(A_{i}, B_{j}\right)\right\} \\
& M=\left(M_{i j}\right), \quad M_{i j}=w\left(A_{i}, B_{j}\right)
\end{aligned}
$$

$\operatorname{det} M=\sum_{\mathbb{P} \in N \Sigma(\mathbb{A} \rightarrow \mathbb{B})} \operatorname{sgn}(p) \omega(\mathbb{p})$.
Every $\mathbb{P} \in P(\mathbb{A} \rightarrow \mathbb{B})$ is nonintersecting!

$$
\begin{aligned}
\operatorname{det} M & =\sum_{\mathbb{P} \in N I(\mathbb{A} \rightarrow \mathbb{B})} \operatorname{sgn}(\mathbb{P}) \omega(\mathbb{p}) . \\
& =\sum_{\mathbb{P} \in P} \operatorname{sgn}(\mathbb{A} \rightarrow \vec{B}) \omega(\mathbb{P}) . \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{k} \omega\left(A_{i}, B_{\sigma(i)}\right) \\
& =\sum_{\sigma \in S_{n}} \operatorname{sqn}(\sigma) M_{i \sigma(i)}
\end{aligned}
$$

let's say $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$


Def). $M=\left(M_{i j}\right)_{i \in[m], j \in[n] \text {. }}$
let $\binom{[m}{k}=$ set of all subsets of $[m]$ with cardinality $k$.
For $I \in\binom{[m]}{k}, J \in\binom{[n]}{k}$ the $(I, J)$-minor of $M$ is $[M]_{I, J}=\operatorname{det}\left(M_{i j}\right)_{i \in I, j \in J}$
ex)


$$
[M]_{\{1,3\},\{2,3\}}=\operatorname{det}\binom{b c}{h i}
$$

Thm (Cauchy-Binet Thm)
$M: n \times l$ matrix
$N: l \times n$ matrix.

$$
\begin{aligned}
\Rightarrow & \operatorname{det}(M N) \\
& =\sum_{I \in\binom{[l]}{n}}[M]_{[n], I}[N]_{I,[n]}
\end{aligned}
$$

