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Let (m) = set of all subsets of<m)

IP GP (AA+ 1B) with cardinality K .

= I squis
,
(Ai , Baxi)

For It ( ) , Je()
DESn

the minor of M is

-Engela Mieri)
[M]1

,5
= det ( Mij) i =I

,je5 .

let's say M = (9) exm = (i)Al
⑧

↳ia II"I [M]91
,32,

52 ,34
= det( = )



Im (Cauchy-Binet Thm).
M : nx1 matrix

N : exn matrix .

= det(MN)

= Many
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