§2.2. The moment functional and orthogonality Def) \mathcal{L} : a l th functional on $\mathbb{C}[x)$.
$\mathbb{C}[x]=$ the space of polynomials in x with coefts in \mathbb{C}.
A linear functional on $\mathbb{C}[x]$ is a map
$\mathcal{L}: \mathbb{C}[x] \rightarrow \mathbb{C}$ such that

$$
\mathcal{L}(a f(x)+b g(x))=a \mathcal{L}(f(x))+b \mathcal{L}(g(x))
$$

for all $f(x, g(x) \in \mathbb{C}[x], a, b \in \mathbb{C}$.
Def) $\left\{\mu_{n}\right\}_{n \geqslant 0}$; seq of complex num.
\mathcal{L} : the $l i n$. functional on $[[x]$. defined by $L\left(x^{n}\right)=\mu_{n}$.
We say that \mathcal{L} is the moment functional determined by moment seq $\left\{\mu_{n}\right\}$.
μ_{n} is called the nth moment of \mathcal{L}.
$\left\{P_{n}(x)\right\}_{n \geqslant 0}$ is an orthogonal polynomial sequence (OPS) w.r.t. \mathcal{L} if
(1) deg $P_{n}(x)=n \quad \forall n \geqslant 0 \quad$ for some.
(2) $R\left(P_{m}(x) P_{n}(x)\right)=K_{n} \delta_{m i n}, \quad\left(K_{n} \neq 0\right)$

We say $\left\{P_{n}(x)\right\}$ is orthonormal if

$$
\mathscr{L}\left(P_{m}(x) P_{n}(x)\right)=\delta_{m, n}
$$

From now on, we will always assume $\operatorname{deg} p_{n}(x)=n$.

The $\left\{p_{n}(x)\right\}$ is a seq of poly.
\mathcal{L} : IT TFAE
(1) $\left\{P_{n}(x)\right\}$ ops for \mathcal{L}.
(2) $\mathcal{L}\left(\pi(x) P_{n}(x)\right)=0$ if $\operatorname{dey} \pi(x)<n$ $\neq 0$ if $\operatorname{deg} \pi(x)=n$.
(3) $\mathscr{L}\left(x^{m} P_{n}(x)\right)=K_{n} \delta_{m, n}, 0 \leq m \leq n$ for some $K_{n} \neq 0$.
Pf) (1) \Rightarrow (2): Suppose $\operatorname{deg} \pi(x) \leqslant n$.

$$
\begin{aligned}
& \pi(x)=\sum_{k=0}^{n} a_{k} p_{k}(x) . \\
& \mathcal{L}\left(\pi(x) p_{n}(x)\right)=\mathcal{L}\left(\sum_{k=0}^{n} a_{k} p_{k}(x) p_{n}(x)\right) \\
& =\sum_{k=0}^{n} a_{k} \mathcal{L}\left(p_{k}(x) p_{n}(x)\right) . \\
& =a_{n} K_{n} \quad\left(k_{n} \neq 0\right) \\
& \text { Cero if deg } \pi(x)<n \\
& \text { nonzero if } \quad \text { " }=n .
\end{aligned}
$$

(2) \Rightarrow (3): Just take $\pi(x)=x^{m}$.
(3) \Rightarrow (1): Easy!

The Suppose $\left\{P_{n}(x)\right\}:$ OPS for \mathcal{L}. and $\pi(x)$: poly of deg n.

$$
\pi(x)=\sum_{k=0}^{n} a_{k} P_{k}(x), a_{k}=\frac{\mathscr{L}\left(\pi(x) P_{k}(x)\right)}{\mathscr{L}\left(P_{k}(x)^{2}\right)}
$$

Pf) Multiply both sides by $P_{j}(x)$ and take R.

$$
\begin{aligned}
& \mathcal{L}\left(\pi(x) p_{j}(x)\right)=\sum_{k=0}^{n} a_{k} \mathcal{L}\left(p_{k}(x) p_{j}(x)\right) \\
&=a_{j} \mathcal{L}\left(p_{j}(x)^{2}\right) \\
& \Rightarrow a_{j}=\frac{\mathscr{L}\left(\pi(x) p_{j}(x)\right)}{\mathcal{L}\left(p_{j}(x)^{2}\right) .}
\end{aligned}
$$

Note if $\left\{P_{n}(x)\right\}$ is OPS for \mathscr{L} then $\left\{C_{n} P_{n}(x)\right\}$ ($c_{n} \neq 0$).
We can always fond a monic OPS for \mathcal{L}. leading coetf $=1$.
In fact, \mathcal{F} unique monic OPS for \mathcal{L}
Also, \exists orthernormal OPS for \mathcal{L}. by letting $\hat{p}_{n}(x)=\frac{P_{n}(x)}{\mathscr{L}\left(P_{n}(x)^{2}\right)^{\frac{1}{2}}}$
Cor Suppose R is a lin. Find with some ODS. let $\left\{K_{n}\right\}_{n \geqslant 0}$ be a seq of nonzero numbers.
(1) J unique monic ops for \mathcal{L}.
(2) \exists ", OPS $\left\{P_{n}(x)\right\}$ /r sit leading coetf of $P_{n}(x)=K_{n}$.
(3) \exists unique ops $\left\{p_{n}(x)\right\}$ for \mathcal{L} sit $\mathcal{L}\left(x^{n} P_{n}(x)\right)=K_{n}$.
§2-3. Existence of OPS.
Q: For what \mathcal{L} does there exist OPS?

Def) The Hankel determinant of a moment sequence $\left\{\mu_{n}\right\} n \geqslant 0$ is

$$
\Delta_{n}=\operatorname{det}\left(\mu_{i j}\right)_{i, j=0}^{n}=\left|\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{n} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\
\vdots & & \ddots & \vdots \\
\mu_{n} & \mu_{n+1} & \cdots & \mu_{2 n}
\end{array}\right|
$$

The \mathcal{L} : $1 i n$. fin with moment seq $\left\{\mu_{n}\right\}$. There is OPS for \mathcal{L} iff $\Delta_{n} \neq 0 \quad \forall n \geqslant 0$. Pf) Fix a seq of nonzen numbers Kn_{n} By Cor, if JOPS for \mathcal{L}, there is a unique $\left\{p_{n}(x)\right\}$ OPS for \mathcal{L} sit. $\mathscr{L}\left(x^{m} P_{n}(x)\right)=K_{n} . \delta_{m, n}$ for $0 \leqslant m \leqslant n$.
let $P_{n}(x)=\sum_{k=0}^{n} c_{n, k} x^{k}$.
Mult x^{m} both sides and take \mathcal{L} $\mathcal{L}\left(x^{m} p_{n}(x)\right)=\sum_{k=0}^{n} c_{n} k \mu_{m+K}=K_{n} \delta_{m, n}$.
we want to find $C_{n, k}$ s.t. hold.

$$
\left(\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{n} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\
\vdots & \ddots & \ddots & \vdots \\
\mu_{n} & \mu_{n+1} & \cdots & \mu_{2 n}
\end{array}\right)\left(\begin{array}{c}
c_{n, 0} \\
c_{n, 1} \\
\vdots \\
c_{n, n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\alpha_{n}
\end{array}\right)
$$

J unique sol in $c_{n i k}$

$$
\Leftrightarrow \quad \Delta_{n} \neq 0 . \quad n \geqslant 0 .
$$

We can solve the mat eq. using cramer's rule

$$
\begin{aligned}
& c_{n, n}=\frac{k_{n} \Delta_{n-1}}{\Delta_{n}} \neq 0 \\
& \Rightarrow \operatorname{deg} p_{n}(x)=n\left(\text { if } \Delta_{n} \neq 0\right) .
\end{aligned}
$$

Lem $\left\{P_{n}(x)\right\}:$ OPS for \mathcal{L}.
$\pi(x)$ has deg n.

$$
\begin{gathered}
\Rightarrow \mathcal{L}\left(\pi(x) p_{n}(x)\right)=\frac{a b \Delta_{n}}{\Delta_{n-1}} \\
a=\text { leading coeff of } \pi(x) \\
b=\quad P_{n}(x) .
\end{gathered}
$$

In ponticular, if $\left\{P_{n}(x)\right\}$ is manic, $f\left(P_{n}(x)^{2}\right)=\frac{\Delta n}{\Delta_{n-1}}$.
Pf). We know from proof prev tho,

$$
b=c_{n, n}=\frac{k_{n} \Delta_{n-1}}{\Delta_{n}} \quad\left(k_{n}=\frac{b \Delta_{n}}{\Delta_{n-1}}\right)
$$

let $\pi(x)=\sum_{k=0}^{n} a_{k} x^{k} \quad\left(a_{n}=a\right)$

$$
\begin{aligned}
& \mathcal{L}\left(\pi(x) p_{n}(x)\right)=\sum_{k=0}^{n} a_{k} \mathcal{L}\left(x^{k} p_{n}(x)\right) \\
& \quad=a_{n} \mathcal{L}\left(x^{n} p_{n}(x)\right)=a_{n} K_{n}=\frac{a b \Delta n}{\Delta n-1}
\end{aligned}
$$

Thu \mathcal{L} : IT foul with man $\left\{\mu_{n}\right\}$.
suppose $\Delta_{n} \neq 0 \quad \forall n \geqslant 0$
\Rightarrow The manic OPS for \mathcal{L} is

$$
P_{n}(x)=\frac{1}{\Delta_{n-1}}\left|\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{n} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{n+1} \\
\vdots & \ddots & \vdots \\
\mu_{n-1} & \mu_{n} & \cdots & \mu_{2 n-1} \\
1 & x & \cdots & x^{n}
\end{array}\right|
$$

PA) This can be done using Cramer's rule. Alternatively, it's sufficient to show

$$
\mathscr{L}\left(x^{m} P_{n}(x)\right)=\delta_{m}, n K_{n} \quad\left(K_{n} \neq 0, m \leq n\right)
$$

$=\left\{\begin{array}{l}0 \text { if } m<n \text { (two identical rows) }\end{array}\right.$ if $m=n$.

In many cases, there is a weight function $\omega(x)$ sit.

$$
\mathcal{L}\left(x^{n}\right)=\int_{a}^{b} x^{n} w(x) d x .
$$

More generally, \exists a measure ψ
(ψ : non-decreasing)

$$
\mathcal{L}\left(x^{n}\right)=\int_{-\infty}^{\infty} x^{n} d \psi(x 2
$$

Fact: Such an expression exists iff $\mathscr{L}(\pi(x))>0$ for every
(x) poly $\pi(x)$ s.t $\pi(x) \geqslant 0 \quad \forall x \in \mathbb{R}$ $(\pi(x) \neq 0)$
Def). A lineman functional \mathcal{L} is positive-definite if $(*)$ holds.

Thy If \mathcal{L} is pos-det, then \exists real OPS for \mathscr{L} pf). First let's prove $\mu_{n} \in \mathbb{R}$ since \mathcal{L} pos-def, $\mu_{2 n}=\mathscr{L}\left(x^{2 n}\right)>0$.

$$
\mathcal{L}\left((x+1)^{2 n}\right)>0 \Rightarrow \mu_{2 n-1} \in \mathbb{R} \text { (ny ind). }
$$

Let's construct. real OPS $\{\ln (x)\}$.
let $p_{0}(x)=1$.
$\theta \cdot \mathbb{R}[x]$
Suppose $p_{0}(x), \ldots p_{n}(x)$ have been construty (This means $\mathcal{L}\left(p_{i} p_{j}\right)=0$ unless $i \neq j, i, j \leq n$) let $P_{n+1}(x)=x^{n+1}+\sum_{k=0}^{n} a_{k} P_{k}(x)$.
We want: $\mathscr{L}\left(P_{m} P_{n+1}\right)=0$ if $m \leq n$. Mult P_{m} and take R, in \otimes

$$
\begin{aligned}
\mathscr{L}\left(P_{m}(x) P_{n+1}(x)\right) & =\mathscr{L}\left(x^{n+1} P_{m}(x)\right) \\
& +a_{m} \mathcal{L}\left(P_{m}(x)^{2}\right)
\end{aligned}
$$

This will be zero if $a_{m}=\frac{-L\left(x^{n+1} p_{m}\right)}{L\left(\rho_{m}{ }^{2}\right)}$

By defining a_{m} in this way
we set $P_{n+1}(x) \in \mathbb{R}[x]$
and $\left\{P_{0, \ldots}, P_{n+1}\right\}$ neal OPS.
we one done by ind.

