Def)
$$\mathcal{K} : \alpha$$
 lith functional on $C(\mathcal{X})$.
{ $P_n(\mathcal{X})_{n\neq 0}^2$ is an orthogonal polynomial
sequence (OPS) w.r.t. \mathcal{L} if
① deg $p_n(\mathcal{X}) = n$ $\forall n \neq 0$ for some.
② $\mathcal{K}(P_m(\mathcal{X})P_n(\mathcal{X})) = K_n \mathcal{S}_{m,n}$, $(K_n \neq 0)$

We say
$$\{P_n(x)\}$$
 is orthonormal if
 $\mathcal{L}(P_m(x)P_n(x)) = \mathcal{S}_{m,n}$

From now on, we will always assume
$$deg p_n(x) = n$$
.

Thin Epical in a seg of poly L: In functional TFAE. () { pn(x) } OPS for L. (2) $\mathcal{L}(\pi(x) \mathcal{P}_n(x)) = 0$ if deg $\pi(x) < n$ $\neq o$ if deg $\pi(x) = n$. (3) $\mathcal{L}(\mathcal{M}_{n}(\mathcal{K})) = K_{n} \delta_{m,n}, 0 \leq m \leq n$ for some $K_n \neq 0$. P) (D) ⇒ (D): Suppose deg π(x) ≤ n. $T(\mathbf{x}) = \sum_{k=0}^{M} \mathcal{Q}_{k} \mathcal{P}_{k}(\mathbf{x}).$ $\mathcal{L}(\pi(x)P_n(x)) = \mathcal{L}\left(\underbrace{\overset{n}{\succeq}}_{k=0} O_k P_k(x) P_n(x)\right)$ $= \sum_{k=0}^{\infty} a_{k} \mathcal{L} \left(p_{k}(x) p_{n}(x) \right)$ $= a_n K_n \quad (k_n \neq 0)$ Lo zero if deg TT(X) < N nonzon if n = N

 $\bigcirc \Rightarrow \textcircled{3}$: Just take $\pi(x) = x^{m}$. B=1: Fasy! Ŭ This Suppose Upico7: OPS for L. and $\pi(x)$: poly of deg n. $\pi(x) = \sum_{k=0}^{M} a_{k} P_{k}(x), \quad a_{k} = \frac{\chi(\pi(x) P_{k}(x))}{\chi(P_{k}(x)^{2})}.$ PF) Multiply both sides by P;(x) and take 2 $\mathcal{L}(\pi \omega) \mathcal{L}(\mathbf{x}) = \sum_{k=1}^{M} \alpha_{k} \mathcal{L}(\mathcal{P}_{k} \omega) \mathcal{P}_{j}(\mathbf{x}))$ $= \alpha_{j} \cdot \mathcal{L}(P_{j}(x)^{2})$ $\Rightarrow a_{j} = \frac{\mathcal{L}(\pi(x) f_{j}(x))}{\mathcal{L}(p_{j}(x))} \square$

Thin
$$!p_{n}(x)$$
?: OPS for L .
 \Rightarrow $p_{n}(x)$ is uniquely determined by L
up to a nonzero scalar multi-
More precisely, if $!Q_{n}(x)$? is OPS
for L , then $Q_{n}(x) = Cnp_{n}(x)$
for some $C_{n} \neq 0$.
Pf) let $Q_{n}(x) = \sum_{k=0}^{M} C_{k} p_{k}(x)$.
 $\Rightarrow C_{k} = \frac{\mathcal{L}(P_{k}(x)Q_{n}(x))}{\mathcal{L}(P_{k}(x)^{2})}$
 $(t, zelo if k < n$
 cmd nonzer if $k=n$.
 $\Rightarrow Q_{n}(x) = Cnp_{n}(x)$.
Note: If $!P_{n}(x)$? is OPS for \mathcal{L} then
 it is also OPS for $\mathcal{L}' = c\mathcal{L}(cto)$
So we may assume $\mathcal{L}(1) = 1$.

Note If
$$\{P_n(x)\}$$
 is OPS for \mathcal{I}
then $\{c_n, P_n(x)\}$
 $(c_n \neq o)$.
We can always find a monit OPS for \mathcal{I} .
 $(eoding coeff = 4$.
In fact, \exists unique monit OPS for \mathcal{I} .
 $Also, \exists orthornormal OPS for \mathcal{I} .
 $by letting p_n(x) = \frac{P_n(x)}{\mathcal{I}(P_n(x)^2)^2}$.
Cor Suppose \mathcal{R} is a lin. ftnl with some OPS.
 $lot f K_n inzo be a seq of nonzero numbers.$
 $0 \exists$ unique monit OPS for \mathcal{I} .
 $3 \exists$ // OPS $\{P_n(x)\} \neq x$.
 $(ading coeff of P_n(x) = K_n.$
 $3 \exists$ unique ops $\{P_n(x)\} \neq K_n.$
 $3 \exists$ unique ops $\{P_n(x)\} \neq K_n.$$

Def) the Hankel doterminant of
a moment sequence i
$$Mninzo$$
 is
 $\Delta_n = det (Mitj)_{ij=0}^n = \begin{bmatrix} Mo & M_1 & \cdots & M_n \\ M_1 & M_2 & \cdots & M_{n+1} \\ M_n & M_{n+1} & \cdots & M_{2n} \end{bmatrix}$

There is a unique $\{p_n(x)\}\$ there is a unique $\{p_n(x)\}\$ of $p_n(x)$. there is a $(x^m p_n(x)) = Kn \cdot \delta_m, n$ for $f \in M \in N$.

let $P_n(x) = \sum_{k=1}^{n} C_{n,k} x^k$ Mult a both sides and take L. $\mathcal{L}(\hat{x}^{n}p_{n}(x)) = \sum_{k=0}^{\infty} C_{n,k} M_{m+k} = K_{n} \delta_{m,n}$ We want to find Cnik s.t. - hold. $\begin{pmatrix} M_{0} & M_{1} & \cdots & M_{n} \\ M_{1} & M_{2} & \cdots & M_{n+1} \\ \vdots & & \vdots \\ M_{n} & M_{n+1} & \cdots & M_{2n} \end{pmatrix} \begin{pmatrix} C_{n,0} \\ C_{n,1} \\ \vdots \\ C_{n,n} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ K_{n} \end{pmatrix}$ Junique sol in Cnik <-> An=0. n30. We can solve the mat eq. Using Cramer's rule $C_{n,n} = \frac{K_n \Delta_{n-1}}{\Delta_n} \neq 0.$ =) deg pu(x)=n (if dn to). T

In many cases, there is a weight function W(X) s.t. $\mathcal{L}(\mathcal{H}^n) = \int_a^b \mathcal{L}^n \omega(x) dx.$ More generally, 7 a measure of (V: non-decreasing) $\mathcal{L}(\mathbf{x}^n) = \int_{-\infty}^{\infty} \mathbf{x}^n d\mathbf{y}(\mathbf{x})$ Fact: Such an expression exists iff L(T(x))>0 for every $\begin{array}{c} (\pi(x) \neq 0) \end{array} \\ (\pi(x) \neq 0) \end{array}$ bef). A linear functional Lis positive-definite if & holds.

Thm If L is pos-det, then I real OPS for 2. PA) First let's place Mn ER. Since L pos-def, $M_{2n} = \mathcal{L}(\mathcal{R}^{2n}) > 0$. $\mathcal{L}((2+1)^{2n}) > 0 \Rightarrow M_{2n-1} \in \mathbb{R}^{(hy \text{ ind})}$ let's construct, real OPS {Pn(x)}. (et Po(x) = 1. CREX] Suppose Po(x), ..., Pn(x) have been constructor (This means $\mathcal{L}(P_i, P_{\delta}) = 0$ unless $i \neq j$, $i \leq n$) $(et P_{n+1}(x) = x^{n+1} + \sum_{k=1}^{n} a_k P_k(x), \dots, (e)$ We wand: $\mathcal{L}(P_m P_{ntl}) = 0$ if $m \leq n$. Mult fm and take L in D. $\mathcal{L}(I_m(x)P_{mt}(x)) = \mathcal{L}(x^{mt}P_m(x))$ $+ am d(Pm(x)^2)$ This will be zero if am = - K(xn+'pm) $\mathcal{K}(\rho u^2)$

by defining am in this way we set Pn+1(x) ER[x] and { Parti ? real OPS, We one done by md. D.