by defining a_{m} in this way we set $P_{n+1}(x) \in \mathbb{R}[x]$ and $\left\{P_{0, \ldots}, P_{n+1}\right\}$ real OPS. We one done by ind.
Def) A polynomial $\pi(x)$ is nonnegative-valued if $\pi(x) \geqslant 0 \quad \forall x \in \mathbb{R}$

So, \mathcal{L} is pos -def $\Leftrightarrow \mathscr{L}(\pi(x))>0$ for all nonzero nonneg-val poly $\pi(x)$.
Lem let $\pi(x)$ be a nonneg-val poly $\Rightarrow \pi(x)=p(x)^{2}+q(x)^{2}$ for some real poly $p(x), q(x)$.

Pf) Since $\pi(x) \in \mathbb{R}$ for every $x \in \mathbb{R}, \pi(x)$ is a real poly. $\left(\because\right.$ lead coed of $\pi(x)$ is $\left.\lim _{x \rightarrow \infty} \frac{\pi(x)}{x^{n}}\right)$.
Since $\pi(x) \geqslant 0, x \in \mathbb{R}$, all, roots of $\pi(x)$ real
have even multiplicity, and its complex roots appear is conjugate pairs.

$$
\begin{gathered}
\pi(x)=r(x)^{2} \prod_{k=1}^{n}\left(x-\alpha_{k}-\beta_{k} i\right)\left(x-\alpha_{k}+\beta_{k} i\right) . \\
r(x) \in \mathbb{R}[x], \quad \alpha_{k}, \beta_{k} \in \mathbb{R} . \\
\text { Let } \prod_{k=1}^{n}\left(x-\alpha_{k}-\beta_{k} i\right)=A(x)+i B(x), \\
A(x) B(x) \in \mathbb{R}[x)
\end{gathered}
$$

Then $\prod_{k=1}^{n}\left(x-\alpha_{k}+\beta_{k} \bar{\pi}\right)=A(x)-i B(x)$

$$
\begin{align*}
\Rightarrow \pi(x) & =r(x)^{2}(A(x)+i B(x))(A(x)-i B(x)) \\
& =r(x)^{2}\left(A(x)^{2}+B(x)^{2}\right)
\end{align*}
$$

By lem, \mathcal{L} is pos-def
$\Leftrightarrow \mathscr{L}\left(p(x)^{2}\right)>0$ for any nonzero poly $p(x)$.
Q: Why R is called pos-def?
Recall: A real $n \times n$ matrix ${ }^{A}$ is pos-def if $u^{\top} A u>0$ for any $u \in \mathbb{R}^{n}$

Sylvester's criterion says A is pordef iff every principal minor of $A>0$.

The \mathcal{L} is pos-def \Longleftrightarrow $\mu_{n} \in \mathbb{R}$ and the Hankel matrix $\left(\mu_{i+j}\right)_{i, j=0}^{n}$ is pos-def. $\forall n \geqslant 0$. $\Leftrightarrow \Delta_{n}>0$. let of this is a prim. minor.

Rf). \Rightarrow By prev lam $\mathscr{L}\left(p_{n}(x)^{2}\right)=\frac{\Delta_{n}}{\Delta_{n-1}}$ (大) Since \mathcal{L} is pos-def, $\Delta_{n} / \Delta n-1>0$
But $\mathscr{L}\left(P_{0}(x)^{2}\right)=\mathscr{L}(1)=\Delta_{0}>0$.
And $\Delta_{n}=\mathcal{L}\left(\operatorname{Pn}(x)^{2}\right) \Delta_{n-1}>0$ for $n \geqslant 1$.
(\Leftrightarrow) Since $\Delta_{n} \neq 0$, there is monic OPS $\left\{p_{n}(x)\right\}_{n \geqslant 0}$.
It's enough to show $\mathcal{L}\left(p(x)^{2}\right)>0$ for any nonzew poly $p(x)$.
Write $p(x)=\sum_{n=0}^{m} a_{n} p_{n}(x) . \quad\binom{a_{m} \neq 0}{\operatorname{deg} p=m}$.

$$
\begin{align*}
\mathscr{L}\left(p(x)^{2}\right) & =\mathcal{L}\left[\sum_{i=1}^{m} a_{i} p_{i}(x) \sum_{j=1}^{m} a_{j} p_{j}(x)\right] \\
& =\sum_{i=1}^{m} a_{i}^{2} \underbrace{L}_{>0}\left(p_{i}(x)^{2}\right) \\
& >0 .
\end{align*}
$$

§2.4. The fundamental recurrence.
The \mathcal{L} : in furl with mons OPS $\left\{P_{n}(x)\right\} n \geqslant 0$.
$\Rightarrow P_{n}(x)$ satisfy 3 -term recurrence
(*) $\quad P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x)$ for some seq $\left\{b_{n}\right\}_{n} \geqslant 0,\left\{\lambda_{n}\right\}_{n \geqslant 1}$. with initial cold $p_{-1}(x)=0, p_{0}(x)=1$. with $\lambda_{n} \neq 0$.
P_{f}) Since $P_{n}(X)$ ore monic.

$$
P_{n+1}(x)-x p_{n}(x)=\sum_{i=0}^{n} a_{i} p_{i}(x)
$$

It's enough to show $a_{i}=0$ if $i \leqslant n-2$. let $0 \leqslant j \leqslant n-2$. Mut $P_{j}(x)$ both sides and take \mathcal{L},

$$
\begin{aligned}
\mathcal{L}\left(p_{j} p_{n+1}-\left(x p_{j}^{\prime}\right) p_{n}\right) & =\sum_{i=0}^{n} a_{i} \mathcal{L}\left(p_{j} p_{i}\right) \\
0 & =a_{j} \underbrace{\mathcal{L}\left(p_{j}^{2}\right)}_{\neq 0}
\end{aligned}
$$

$$
\Rightarrow a_{j}=0
$$

It remains to show $\lambda_{n} \neq 0$. Multiply x^{n-1} to \otimes and take R.

$$
\begin{aligned}
\mathscr{L}\left(x^{n-1} p_{n+1}\right)= & \mathscr{L}\left(x^{n} p_{n}\right)-b_{n} \mathcal{L}\left(x^{n-1} p_{n}\right)^{0} \\
0 & -\lambda_{n} \mathscr{L}\left(x^{n-1} p_{n-1}\right),
\end{aligned}
$$

$$
\Rightarrow \mathscr{L}\left(x^{n} p_{n}\right)=\lambda_{n} \mathcal{L}\left(x^{n-1} p_{n-1}\right)
$$

$$
0 \neq \mathscr{L}\left(p_{n} p_{n}\right) \quad \lambda_{n} R\left(p_{n-r} p_{n-1}\right) \neq 0
$$

$$
\Rightarrow \lambda_{n} \neq 0
$$

Thm L: in ftrl with monr OPS $\left\{P_{n}(x)\right\} n \geqslant 0$.
\Rightarrow (2).
(*) $P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x)$
$\Rightarrow \lambda_{n}=\frac{R\left(p_{n}^{2}\right)}{R\left(P_{n-1}^{2}\right)}=\frac{\Delta_{n-2} \Delta_{n}}{\Delta_{n-1}^{2}}$
(2) $b_{n}=\frac{K\left(x P_{n}^{2}\right)}{\mathscr{L}\left(P_{n}^{2}\right)}$
(3) $\mathscr{L}\left(p_{n}(x)^{2}\right)=\lambda_{1} \cdots \lambda_{n} \mathscr{L}(1)=\frac{\Delta_{n}}{\Delta_{n-1}}$
(3) follows from (1)
(4)
)
a (3)
Cor suppose \mathcal{L} has $\frac{\text { monic }}{O P S}\left\{P_{n}(x)\right\}$ \mathcal{L} is pos-def $\Longleftrightarrow b_{n} \in \mathbb{R}, \lambda_{n}>0$.
$\left.p_{f}\right)(\Rightarrow) \quad p_{n}(x)$: real. $\forall n$.
(4) $\Delta_{n}=\lambda_{1}^{n} \lambda_{2}^{n-1} \cdots \lambda_{n}^{1} \mathcal{L}(1)^{n+1}$

Pf) We proved

$$
\lambda_{n}=\frac{R\left(P_{n}^{2}\right)}{\mathscr{L}\left(\rho_{n T}^{2}\right)}
$$

We also proved $\mathscr{R}\left(p_{n}^{2}\right)=\frac{\Delta_{n}}{\Delta_{n-1}}$.
\Rightarrow (1) holds.
Mult P_{n} and take \mathcal{L} in \otimes

$$
\begin{aligned}
\mathscr{L}\left(P_{n} P_{n+1}\right)= & \mathcal{L}\left(x P_{n}^{2}\right)-b_{n} \mathcal{L}\left(P_{n}^{2}\right) \\
& -\lambda_{n} \mathcal{L}\left(P_{n} P_{n-1}\right)_{0}
\end{aligned}
$$

ex). Tchehysher $T_{n}(x)$ is defined hy $\operatorname{Tn}(\cos \theta)=\cos n \theta . \quad(n \geqslant 1)$.
$\cos (n+1) \theta+\cos (n-1) \theta=2 \cos \theta \cos n \theta$

$$
T_{n+1}+T_{n-1}=2 \times T_{n}
$$

* … $T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) . \quad(n \geqslant 1)$

$$
T_{1}(x)=x T_{0}(x)
$$

$$
\left(T_{0}(x)=1, \quad T_{1}(x)=x\right)
$$

lend coeff of $T_{n}(x)$ is $\begin{cases}2^{n-1} & (n \geqslant 1) \\ 1 & n=0 .\end{cases}$
Define $\hat{T}_{n}(x)= \begin{cases}2^{1-n} T_{n}(x) & (n \geqslant 1) \\ T_{n}(x)=1 & (n=0) .\end{cases}$ $\hat{T}_{n}(x)$: monic Tchebycher.

Divide * hy 2^{n}

$$
\begin{aligned}
2^{-n} T_{n+1} & =x \cdot 2^{1-n} T_{n}-2^{-2} 2^{2-n} T_{n-1} \\
\hat{T}_{n+1} & =x \hat{T_{r}}-\frac{1}{4} \hat{T_{n-1}} \quad(n \geqslant 2) \\
\hat{T_{2}} & =x \hat{T_{1}}-\frac{1}{2} \hat{T}_{0} \quad(n=1)
\end{aligned}
$$

$$
\begin{array}{ll}
T_{0}=1, & T_{1}=x, \\
T_{2}=2 x^{2}-1 \\
\hat{T_{0}}=1, & \hat{T}_{1}=x, \\
T_{2}=x^{2}-\frac{1}{2}
\end{array}
$$

$$
\hat{\tau_{n+1}}(x)=\left(x-b_{n}\right) \hat{\tau_{n}}(x)-\lambda_{n} \frac{\hat{T_{n-1}}}{}(n \geqslant 1)
$$

$b_{n}=0, \quad \lambda_{n}= \begin{cases}\frac{1}{4} & \text { if } n \geqslant 2 \\ \frac{1}{2} & \text { if } n=1\end{cases}$

If $h_{n}=0$ then
$P_{2 n}(x)$ is even function
$n_{2 n+1}(x)$ is odd

$$
\left\{\begin{array}{l}
P_{2 n}(x)=P_{2 n}(-x) \\
P_{2 n+1}(-x)=-P_{2 n+1}(x)
\end{array}\right.
$$

Def) L is symmetric if all of its odd moments one zen.

$$
\left(\mu_{2 n+1}=0\right) \text {. }
$$

The $\mathcal{L}:$ in foul with mons OPS $\left\{p_{u}(x)\right\}$. THEA.
(1) \mathcal{L} symmetric
(2) $P_{n}(-x)=(-1)^{n} P_{n}(x)$.
(3) $b_{n}=0 \quad \forall n \geqslant 0$.

Pf) (1) \Rightarrow (2): \mathcal{L} sym $\Rightarrow \mathcal{L}(\pi(-x))=\mathcal{L}(\pi(x))$
for all poly $\pi(x)$.
Thus $\mathcal{L}\left(P_{m}(-x) P_{n}(-x)\right)=\mathscr{L}\left(P_{m}(x) P_{n}(x)\right)=K_{4} \operatorname{Kim}_{m_{n}}$
$\Rightarrow\left\{P_{n}(-x)\right\}$ OPS for \mathcal{L}.
$\Rightarrow P_{n}(-x)=c_{n} p_{n}(x) \Rightarrow c_{n}=(-1)^{n}$
(2) \Rightarrow (1) : since $P_{2 n+1}(-x)=-P_{2 n+1}(x)$ $P_{2 n+1}(x)$ is odd.
$\Rightarrow R\left(P_{2 n+1}(x)\right)=$ sun of odd moments $\overbrace{0}^{1 \%}=\mu_{2 n+1}+$ (lower odd mom)
\Rightarrow By ind, $\mu_{2 u t 1}=0 \quad \forall n$.
(2) $\Leftrightarrow(3):$ Let $Q_{n}(x)=(-1)^{n} P_{n}(-x)$.
(2) means $P_{n}(x)=Q_{n}(x)$.

$$
\left(\begin{array}{l}
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x) \\
Q_{n}(x)=(-c)^{n} P_{n}(-x)
\end{array}\right.
$$

replace x by $-x$ multiply $(-1)^{n+1}$

$$
\begin{aligned}
(-1)^{n+1} p_{n+1}(-x)= & \left(-x-b_{n}\right)(-1)^{n+1} P_{n}(-x) \\
& -\lambda_{n}(-1)^{n+1} P_{n-1}(-x) \\
Q_{n+1}(x)= & \left(x+b_{n}\right) Q_{n}(x)-\lambda_{n} Q_{n-1}(x)
\end{aligned}
$$

Thus $P_{n}(x)=Q_{n}(x) \Leftrightarrow b_{n}=0$.

