The (Favard's thm).
$\left\{P_{n}(x)\right\}$: seq of manic poly.
J \mathcal{L} s.t. $\left\{p_{n}(x)\right\}$ is OPS for h
\Longleftrightarrow

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x)
$$

for some b_{n}, λ_{n} with $\lambda_{n} \neq 0$.
pf) (\Rightarrow) : We have already done.
(\Leftarrow) If there is such \mathcal{L}, we must have $\mathscr{L}\left(p_{n}(x)\right)=0, n \geqslant 1$.
Therefore \mathcal{L} is uniquely determined by
(A) $\quad \mathcal{L}\left(P_{n}(x)\right)=\delta_{n o}, \quad n \geqslant 6$

So we define a in ftrll R by (x).
Enough to show for $0 \leq k \leq n$ Claim: $\mathcal{L}\left(x^{k} P_{n}(x)\right)=\delta_{k, n} \lambda_{1} \cdots \lambda_{n}$.

We will prove this by induction on k.
If $k=0, \mathcal{L}\left(P_{n}(x)\right)=\delta_{n, 0}$ true!.
let $k \geqslant 1$. suppose claim is true for $k-1$. consider $n \geqslant k$.
Multiply x^{k-1} both sides of 3 term rec.

$$
\begin{aligned}
\Rightarrow x^{k} p_{n}(x) & =x^{k-1} p_{n+1}(x)+b_{n} x^{k-1} p_{n}(x)+\lambda_{n} x^{k-1} p_{n-1}(x) \\
\mathcal{L}\left(x^{k} p_{n}(x)\right) & =0+0+\lambda_{n} \mathscr{L}\left(x^{k-1} p_{n-1}(x)\right) \\
& =\lambda_{n} \cdot \delta_{n, k} \lambda_{1} \cdots \lambda_{n-1}
\end{aligned}
$$

\Rightarrow True for k.
claim is proved by induction.
Note \mathcal{L} is pos-def iff $\lambda_{n}>0$.
§2.5. Christoffel-Darboux identities and zeros of orthogonal polynomials

The (christofel-Darboux identifies) $\left\{p_{n}(x)\right\}$: poly satisfying
(*): $p_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} p_{n-1}(x)$ ($\lambda_{n} \neq 0$).
(1) $\sum_{k=0}^{n} \frac{P_{k}(x) P_{k}(y)}{\lambda_{1} \cdots \lambda_{k}}=\frac{P_{n+1}(x) P_{n}(y)-P_{n+1}(y) P_{n}(x)}{\lambda_{1} \cdots \lambda_{n}(x-y)}$
(2) $\sum_{k=0}^{n} \frac{P_{k}(x)^{2}}{\lambda_{1} \cdots \lambda_{k}}=\frac{P_{n+1}^{\prime}(x) P_{n}(x)-P_{n+1}(x) P_{n}^{\prime}(x)}{\lambda_{1} \cdots \lambda_{n}}$
pf) Multiply $p_{n}(y)$ to \otimes.

$$
p_{n+1}(x) p_{n}(y)=\left(x-b_{n}\right) p_{n}(x) p_{n}(y)-\lambda_{n} p_{n}(y) p_{n-1}(x)
$$

Interchange x, y :
$p_{n+1}(y) p_{n}(x)=\left(y-b_{n}\right) p_{n}(x) p_{n}(y)-\lambda_{n} p_{n}(x) p_{n-1}(y)$.

Subtract:

$$
\begin{aligned}
& p_{n+1}(x) p_{n}(y)-p_{n+1}(y) p_{n}(x) \\
& =(x-y) p_{n}(x) p_{n}(y)+\lambda_{n}\left(p_{n}(x) p_{n-1}(y)-p_{n}(y) p_{n-1}(x)\right) \\
& \text { let } f_{n}=p_{n+1}(x) p_{n}(y)-p_{n+1}(y) p_{n}(x) . \\
& \text { (x-y) } p_{k}(x) p_{k}(y)=f_{k}-\lambda_{k} f_{k-1} \quad\left(f_{-1}=0\right) .
\end{aligned}
$$

Divide by $\lambda_{1} \cdots \lambda_{k}(x-y)$

$$
\frac{p_{k}(x) P_{k}(y)}{\lambda_{1} \cdots \lambda_{k}}=\frac{f_{k}}{\lambda_{1} \cdots \lambda_{k}(x-y)}-\frac{f_{k-1}}{\lambda_{1} \cdots \lambda_{k-1}(x-y)}
$$

Summing over $k=0, \ldots n$, we get (1).
write (1) as

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{P_{k}(x) P_{k}(y)}{\lambda_{1}-\lambda_{k}} \\
= & \frac{P_{n+1}(x) P_{n}(y)-P_{n+1}(y) P_{n}(y)+P_{n+1}(y) P_{n}(y)-P_{n+1}(y)^{2}}{\lambda_{1}-\lambda_{n}(x-y)}
\end{aligned}
$$

Taking $\lim _{y \rightarrow x}$ we get (2).

Lem L : positive-definite lin ital with manic ops $\left\{p_{n}(x)\right\}$.
$\Rightarrow P_{n}(x)$ has n distinct real rooks $\forall n \geqslant 1$
Pf). Since $\mathcal{L}\left(P_{n}(x)\right)=0$,
$p_{n}(x)$ must have a root of odd multiplicity.
(\because otherwise $p_{n}(x) \geqslant 0, \forall x$.

$$
\Rightarrow \mathscr{L}(\operatorname{Pn}(x))>0, \text { contradiction). }
$$

let x_{1}, \ldots, x_{k} be the distinctrizeros. of $P_{n}(x)$ with odd multi.
Then

$$
\text { Then }(\underbrace{\left(x-x_{1}\right) \cdots\left(x-x_{k}\right)} P_{n}(x))>0
$$

deg k
By orthogonality $k=n$.
$\Rightarrow P_{n}(x)$ has n dist, roots. veal.

$$
y=p_{n}(x)
$$

The. L : positive-definite lin foal with manic ops $\left\{p_{n}(x)\right\}$.
$\Rightarrow P_{n}(x)$ has n distinct real roots

$$
x_{n, n}<x_{n, n-1}<\cdots<x_{n, 1}
$$

with interlacing property

$x_{n+1, n+1}<x_{n, n}<x_{n+1, n}<x_{n, n-1}<\ldots$
$\cdots \quad x_{n+1,2}<x_{n, 1}<x_{n+1,1}$.
Pf) By $C-D$ id (2) with $x=x_{n, j}$
sign of $P_{n}^{\prime}\left(x_{n, j}\right)=(-1)^{j-1}$

$$
0<\sum_{k=0}^{n} \frac{p_{k}\left(x_{n, j}\right)^{2}}{\lambda_{1} \cdots \lambda_{k}}=\frac{p_{n+1}^{\prime}\left(x_{n, j}\right) p_{n}\left(x_{n_{i j}}\right)^{0}-p_{n+1}\left(x_{n, j}\right) p_{n}^{\prime}\left(x_{n, j}\right)}{\lambda_{1} \cdots \lambda_{n}}
$$

$\Rightarrow P_{n+1}\left(x_{n, j}-\right)$ has the opposite
sign of $P_{n}^{\prime}\left(X_{n, j}\right)$.

Since $\lim _{x \rightarrow \infty} P_{n+1}(x)=\infty$,

$$
\lim _{x \rightarrow-\infty} p_{n+1}(x)=(-1)^{n+1} \infty
$$

\Rightarrow interlacing!

We will focus on combinatorics of $O P$.

Plan
We review
basics of combinatorics
generating functions formal power series.
Dyck paths, Motzkin path. matchings, set partitions permutations.

There are 2 ways to study OP.
(1) general theory.
(2) special op.
moments comb obj.
Hermite $\quad \mu_{2 n}=(2 n-1)!!\quad$ perfect matchings.
Charlier $\mu_{n}=$ set partitions
Laguerve $\mu_{n}=n!$ permutations,

