Ch3. Basics of enumerative combinatorics. Notation: $[n] = \{1, 2, \dots, n\}.$ \$3.1. Formal power series and generating functions. A power series is a series of the form $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots$ an: coefficient of 20 in fran. as: the constant term of fix). If an EIR, then for com be considered as a function defined on the set of x for which the series converges. ex) If |x| < 1, $1+x+x^2+\cdots = \frac{1}{1-x}$ But this doesn't make sense if |x|≥1.

let R be a commutative ring with 1. R[x] = the Ving of polynomials in x with coeffs in R. Def) The Hing of formal power series in a with coeffs in R is the set $\mathbb{R}[[x]] = \left\{ a_0 + a_1 x + a_2 x^2 + \cdots + a_0, a_1, a_2, \dots \in \mathbb{R} \right\},$ with additim $\left(\sum_{n=0}^{\infty}a_{n}\chi^{n}\right)+\left(\sum_{n=0}^{\infty}b_{n}\chi^{n}\right)=\sum_{n=0}^{\infty}(a_{n}tb_{n})\chi^{n}$ multi $\left(\sum_{n=0}^{\infty}a_{n}x^{n}\right)\left(\sum_{n=0}^{\infty}b_{n}x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty}a_{k}b_{n-k}\right)x^{n}$ (Formal power series are polynomials with Infinite degree.) The multiplicative identity is 1=1+0.2+0.2+. The multiplicative inverse of fix is a formal power series g(x) such that

fixig(x)=1. (if girl exists) we write fixit it for inv of fixi.

$$e(x)$$
. $1+x+x^2+\cdots = \frac{1}{1-x}$ holds.

because

$$(1+x+x^2+\cdots)(1-x)$$

 $= (1+x+x^2+\cdots) - (x+x^2+\cdots)$
 $= 1.$
 $=) (1+x+x^2+\cdots)^{-1} = 1-x.$
and $(1-x)^{-1} = 1+x+x^2+\cdots$
 11
 $\frac{1}{1-x}$

Important aspect of formal power ceries ; the coeff of xⁿ must be computed in a finite number of add & mult.

ex)
$$e^{1+x} := \sum_{n \ge 0} \frac{(1+x)^n}{n!}$$

No not a formal power series in [R[[50]]].
The constant term is $\sum_{n\ge 0} \frac{1}{n!} \rightarrow infinite$ scum.
 $e^{(x)} e \cdot e^{(x)} := e \sum_{n\ge 0} \frac{x^n}{n!}$
is a formal power series in [R[[=x]]].
because well of x^n is $\frac{e}{n!}$.
For two formal power series
 $f(x) = \sum_{n\ge 0} f_n x^n$, $g(x) = \sum_{n\ge 0} g_n x^n$ ($g_0=0$)
we define the composition of f and g by
 $f(g(x)) = \sum_{n\ge 0} f_n g(x)^n$.
Since $g_0 = 0$, $g(x)^n$ has lowest degree $\ge n$.
The well of x^m in $f(g(x))$ is equal to
 $coeff$ of x^m in $\sum_{n\ge 0} f_n g(x)^n$.
If $g_1 \neq 0$ const term of $f(g(x))$ is $\sum_{n\ge 0} f_n g_n$.

ho

Prop R: field. for FRECXIJ. $f(x)^{\dagger} exists \iff f(o) \neq 0$. constant term. Pf) (⇒) let g(x)=fex)[†]. Suppose fco=0. The const term of f(x)g(x) is f(o)g(o)=0But f(x)g(x)=1 has const term 1 Centradiction. (=) let's write $f(x) = f_0 + f_1 \times + f_2 \times + \cdots$ $= f_{\mathfrak{s}} \left(1 + f_{\mathfrak{s}}^{-1} f_{\mathfrak{s}} \chi + f_{\mathfrak{s}}^{-1} f_{\mathfrak{s}} \chi^{2} + \cdots \right)$ $= f_{o}(1 - h(x))$ $h(\chi) = \sum_{n \ge 1} h_n \chi^n, \quad h_n = -f_o^{-1} f_n.$ $\frac{1}{f(x)} = \frac{1}{f_{\bullet}} \cdot \frac{1}{1 - h(x)} = \frac{1}{f_{\bullet}} \left(1 + h(x) + h(x)^{2} + \cdots \right)$ $-h(x)^n$ has lowest deg $\ge n$. \Box

As in calculus we define the derivative of $f(x) = \sum_{n \ge 0} f_n x^n$ by $f'(x) = \sum_{n \ge 1} n f_n \chi^{n-1}$. Prop (f(x)g(x))' = f'(x)g(x) + f(x)g'(x) $\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$ (glo)=0) f(g(x))' = f'(g(x)) g'(x)(g(0)=0.)

ex). A: set of all subsets of [n].

$$wt(a) = \chi^{|a|} y^{n-|a|}$$

The gen ftn for A is
 $\sum wt(a) = \sum \chi^{|a|} y^{n-|a|}$
 $a \in A$ $n \leq [n]$

$$= \sum_{k=0}^{M} \binom{M}{K} \chi^{k} y^{m-k} = (\chi + y)^{m}$$

ex)
$$A = set of permutations of Entry.Wt(a) = $\chi^{cycle(a)}$$$

cycle (a) = # cycles in a.

$$\frac{\Rightarrow}{a \in A} = \chi(a + 1) - (a + n - 1)$$