Ch. Basics of enumerative combinatorics.
Notation: $[n]=\{1,2, \ldots, n\}$.
§3.1. Formal power series and generating functions.
A power series is a series of the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

a_{n} : coefficient of x^{n} in $f(x)$.
a_{0} : the constant term of $f(x)$.
If $a_{n} \in \mathbb{R}$, then $f(x)$ can be considered as a function defined on the set of x for which the series converges.
ex. If $|x|<1$,

$$
1+x+x^{2}+\cdots=\frac{1}{1-x}
$$

But this doesn't make sense if $|x| \geqslant 1$.

Let R be a commutative ring with 1 .
$R[x]=$ the ring of polynomials in x with colts in R.
Def) The ring of formal power series in x with coeffs in R is the set

$$
R[[x]]=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\ldots: a_{0}, a_{1}, a_{2}, \ldots \in R\right\},
$$

with addition

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) x^{n}
$$

multi

$$
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=\Rightarrow}^{\infty} b_{n} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n}
$$

(Formal power series are polynomials with infinite degree.)
The multiplicative identity is $1=1+0 \cdot x+0 \cdot x^{2}+\cdots$
The multiplicative inverse of $f(x)$ is a formal pow or series $g(x)$ such that $f(x) g(x)=1$. (if $g(x)$ exists).
we write $f(x)^{-1}$ it $\frac{1}{f(x)}$ for inv of $f(x)$.
ex). $1+x+x^{2}+\cdots=\frac{1}{1-x}$ holds.
because

$$
\begin{aligned}
& \left(1+x+x^{2}+\cdots\right)(1-x) \\
& =\left(1+x+x^{2}+\cdots\right)-\left(x+x^{2}+\cdots\right) \\
& =1 . \\
& \Rightarrow\left(1+x+x^{2}+\cdots\right)^{-1}=1-x .
\end{aligned}
$$

and $(1-x)^{-1}=1+x+x^{2}+\cdots$

$$
\begin{aligned}
& 11 \\
& \frac{1}{1-x}
\end{aligned}
$$

Important aspect of formal power series : The coeff of x^{n} must be computed in a finite number of add \& molt.
ex) $e^{1+x}:=\sum_{n \geqslant 0} \frac{(1+x)^{n}}{n!}$
is not a formal power series in $\mathbb{R}[[x]]$.
The constant term is $\sum_{n \geqslant 0} \frac{1}{n!} \rightarrow$ infinite sum.
ex) $e \cdot e^{x}:=e \sum_{n \geqslant 0} \frac{x^{n}}{n!}$
is a formal power series in $\mathbb{R}[[x]]$. because coetf of x^{n} is $\frac{e}{n!}$.
For two formal power series

$$
f(x)=\sum_{n \geqslant 0} f_{n} x^{n}, \quad g(x)=\sum_{n \geqslant 0} g_{n} x^{n} \quad\left(g_{0}=0\right)
$$

we define the composition of f and g by

$$
f(g(x))=\sum_{n \geqslant 0} f_{n} g(x)^{n} .
$$

Since $g_{0}=0, g(x)^{n}$ has lowest degree $\geqslant n$.
The coelf of x^{m} in $f(g(x))$ is equal to coff of x^{m} in $\sum_{n=0}^{m} f_{n} g(x)^{n}$
If $g_{0} \neq 0$, const term of $f(g(x))$ is $\sum_{n=0}^{\infty} f_{n} g_{0}$

Prop R : field. $f(x) \in R[[x]]$
$f(x)^{-1}$ exists $\Longleftrightarrow f(0) \neq 0$.
constant term.
Pf) \Leftrightarrow let $g(x)=f(x)^{-1}$. Suppose $f(0)=0$. The cost term of $f(x) g(x)$ is $f(0) g(0)=0$ But $f(x) g(x)=1$ has cons term 1 contradiction.
(\Leftrightarrow) let's write

$$
\begin{aligned}
f(x) & =f_{0}+f_{1} x+f_{2} x^{2}+\cdots \\
& =f_{0}\left(1+f_{0}^{-1} f_{1} x+f_{0}^{-1} f_{2} x^{2}+\cdots\right) \\
& =f_{0}(1-h(x)) \\
h(x) & =\sum_{n \geqslant 1} h_{n} x^{n}, \quad h_{n}=-f_{0}^{-1} f_{n} \\
\frac{1}{f(x)} & =\frac{1}{f_{0}} \cdot \frac{1}{1-h(x)}=\frac{1}{f_{0}}\left(1+h(x)+h(x)^{2}+\cdots\right)
\end{aligned}
$$

$h(x)^{n}$ has lowest deg $\geqslant n$.

As in calculus we define the derivative of

$$
f(x)=\sum_{n \geqslant 0} f_{n} x^{n}
$$

by $f^{\prime}(x)=\sum_{n \geqslant 1} n f_{n} x^{n-1}$.
Prop

$$
\begin{array}{ll}
(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \quad(g(0) \neq 0) \\
f(g(x))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x) . & (g(0)=0 .)
\end{array}
$$

Def) The generating function for a seq $\left\{a_{n}\right\}_{n \geq 0}$ is the formal power series

$$
\sum_{n \geqslant 0} a_{n} x^{n}
$$

ex). The gen.ftn. for $a_{n}=2^{n}$ is

$$
\sum_{n \geqslant 0} 2^{n} x^{n}=\sum_{n \geqslant 0}(2 x)^{n}=\frac{1}{1-2 x}
$$

ex) $a_{n}=n \cdot 2^{n}$.
Take derivative in prev ex

$$
\sum_{n \geqslant 0} n 2^{n} x^{n-1}=\frac{2}{(1-2 x)^{2}}
$$

Must by x

$$
\sum_{n \geqslant 0} n 2^{n} x^{n}=\frac{2 x}{(1-2 x)^{2}}
$$

Def) A: a set of (combinatorial) objects. A weight if A is a function
wt: $A \rightarrow R$ any ling.
The generating function for A with respect to wt is $\sum_{a \in A} w t(a)$. (provided this sum is valid).
ex).

$$
\begin{aligned}
& A=\{0,1,2, \ldots\} \\
& \cot (a)=x^{a}
\end{aligned}
$$

the gen for for A is

$$
\sum_{a \in A} \operatorname{wt}(a)=\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}
$$

ex). A: set of all subsets of $[n]$.

$$
\operatorname{wt}(a)=x^{|a|} y^{n-|a|}
$$

The gen fth for A is

$$
\begin{aligned}
& \sum_{a \in A} w t(a)=\sum_{a \leq[n]} x^{|a|} y^{n-|a|} \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=(x+y)^{n}
\end{aligned}
$$

$$
\begin{gathered}
\text { ex) } A=\text { set of permutations of }[n] . \\
w+(a)=x^{\text {cycle }(a)} \\
\text { cycle }(a)=\# \text { cycles in } a \\
\Rightarrow \sum_{a \in A} \operatorname{ct}(a)=x(x+1) \cdots(x+n-1)
\end{gathered}
$$

