§3.2. Deck paths and Motzkin paths
Def) A lattice path from u to v is a sequence $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ of points in $\mathbb{Z} \times \mathbb{Z}$ with $v_{0}=u, v_{n}=v$.
Each pair $\left(v_{i}, v_{i+1}\right)$ is called a step.
sometimes $\left(v_{i}, v_{i+1}\right)=v_{i+1}-v_{i}$

$\operatorname{Pyck}(u \rightarrow v)=$ set of all byck paths from u to v.
$\left.\operatorname{Dyck}_{2 n}=\operatorname{Dyck}(0,0) \rightarrow(2 n, 0)\right)$.
identify $\in \mathbb{Z} \times \mathbb{Z}$.
Q: \mid Duck $_{2 n} \mid=$?
Def) A Duck path is a lattice path consisting of up steps $(1,1)$ and down steps $(1,-1)$ staying weakly above x-axis.

$$
\begin{aligned}
& \text { let } C(x)=\sum_{n \geqslant 0} \mid \text { Duck }_{2 n} \mid x^{n} \text {. } \\
& C(x)=1+x+x^{2}+x^{2}+x^{3}+\ldots+x^{3}+ \\
& =1+x+2 x^{2}+5 x^{3}+\text {. } \\
& \Rightarrow C(x)=\sum_{\pi \in \text { back }} w t(\pi) \\
& \text { all Duck paths from } \\
& \text { C0,0) to }(2 n, 0) \\
& \omega t(\pi)=x^{(\# \text { down steps in } \pi)^{\text {for }} n \in \mathbb{Z}_{70}} \\
& C(x)=1 \cdot \underbrace{\sim}_{x^{2}} \\
& =1+C(x) \cdot x \cdot C(x) \text {. } \\
& \Rightarrow x^{2}-c+1=0 \text {. } \\
& C(x)=\frac{1 \pm \sqrt{1-4 x}}{2 x}-i \text { correct } \\
& \text { cons term }=C(0)=\frac{1 \pm 1}{2 \cdot 0} \\
& \text { A } \\
& \wedge_{x^{3}} \wedge \\
& C(x)=\frac{1}{0}+ \\
& \text { any } \sigma \text { E'byck; } \tau \in \text { Back } \\
& =1+c(x) \cdot x \cdot c(x) \text {. } \\
& \text { cost term }=C(0)=\frac{1 \pm 1}{2 \cdot 0} \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& c(x)=\frac{1-\sqrt{1-4 x}}{2 x} \\
& (1+x)^{\alpha}=\sum_{n \geqslant 0}\binom{\alpha}{n} x^{n} \\
& \binom{\alpha}{n}=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!} \\
& \sqrt{1-4 x}=(1-4 x)^{\frac{1}{2}} \\
& =\sum_{n \geqslant 0}\binom{\frac{1}{2}}{n}(-4 x)^{n} \\
& =\sum_{n \geqslant 0} \frac{\frac{1}{2} \cdot\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(-\frac{2 n-1}{2}\right)}{n!}(-1)^{n} 4^{n} x^{n} \\
& \left.\sum\right|_{y y} \left\lvert\, k k_{n} \stackrel{1 x^{n}}{=} \sum_{n \geqslant 0} \frac{1}{n+1}\binom{2 n}{n} x^{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =1-\sum_{n \geqslant 1} \frac{(2 n-2)!}{n!(n-1)!} \cdot 2 \cdot x^{n} \\
& =1-2 \cdot \sum_{n=1}\binom{2 n-2}{n-1} \cdot \frac{1}{n} x^{n} \\
& \text { Binomial thm }
\end{aligned}
$$

The Catalan number is
(2): $A A A B B B, A A B A B B$.

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

(3)

C_{0}, C_{1}, \ldots

$$
=1,1,2,5,14,42,132,429, \ldots
$$

Stanley collected >200 "Catalan objects".
some Catalan objects.
(1) buck paths of len $2 n$
(2) ballet seq. of $e n 2 n$
(23) triangulation of $(n+2)-g o n$
(4) plane binary trees with n vertices.
(4)

Pop If $n \geqslant 1$

$$
\begin{array}{ll}
C_{n}=\sum_{k=0}^{n-1} C_{k} C_{n-1-k} & \left(C_{0}=1\right) \\
C_{1}=C_{0}-C_{0}=1 \quad C_{3}=C_{2} C_{0}+C_{1} C_{1} \\
C_{2}=C_{1} C_{0}+C_{0} C_{1}=2 & +C_{0} C_{2} \\
2+1+2=5 .
\end{array}
$$

Def) A Motzkin path is a lattice path consisting of up steps $(1,1)$ down " $(1,-1) \backslash$ horizontal " $(1,0) \longmapsto$ staying weakly above x-axis.

$$
\operatorname{Motz}(u \rightarrow v)=\text { the set of }
$$ all Motzkin paths from u to v.

$$
\operatorname{Motz}_{n}=\operatorname{Motz}^{(0,0) \rightarrow(n, 0)) ~}
$$

Prop $\left|\operatorname{Motz}_{n}\right|=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k} C_{k}$.

Prop $\sum_{n \geqslant 0}\left|\operatorname{Mot}_{n}\right| x^{n}=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}}$
Pf) let $L H S=M(x)$.

$$
M=1+x M+x^{2} M^{2}
$$

\$3.3. Set partitions and matchings. Def) A set partition of a set X is a collection $\pi=\left\{B_{1}, \ldots, B_{k}\right\}$ of subsets of X satisfying
(1) $B_{i} \neq \varnothing \quad \forall i$
(2) $B_{i} \cap B_{j}=\phi \quad \forall_{i} \neq j$
(3) $B_{1} \cup \cdots \cup B_{K}=X$

Each B_{i} is called a block.

A set partition of $[n]=\{1, \ldots n\}$ can be visuatied.
e.g. $\pi=\{\{1,3,5,6\},\{2,7\},\{4\}\}$

Def $\Pi_{n}=$ set of all set partitions of $[n]$.

$$
\pi_{0}=\{\phi\} .
$$

Def). $\Pi_{n, k}=$ set of all set partitions of $[n]$ with k blocks
Def) The Stirling number of 2 nd kind is $S(n, k)=|\pi n, k|$.
ex)

$$
\begin{aligned}
& S(0, k)=\delta_{k, 0} \\
& S(n, 0)=\delta_{n, 0} \\
& S(n, n)=1 \\
& S(n, k)=0 \quad \text { if } k>n
\end{aligned}
$$

Prop For $n, k \geqslant 1$,

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

pf) $\pi \in \Pi_{n, k}$
case $I \quad\{n\} \in \pi$.
$\Rightarrow \pi$ with $\{n\}$ removed $\in \pi_{n-1, k-1}$.

$$
\rightarrow S(n-1, k-1)
$$

case $\pi \quad\{n\} \notin \pi$.
$\left(\pi\right.$ with n deleted) $\in \pi_{n-1, k}$
$\Rightarrow k \cdot S(n-1, k)$ possible such set partitions.
Prop $S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n}$.
Pf) \# onto functions $f:[n] \rightarrow[k]$

$$
=k!S(n, k)
$$

by principle of inclusion 8 exclusion

$$
=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n}
$$

Def) A falling factorial is

$$
(x)_{n}:=x(x-1) \cdots(x-n+1)
$$

Prof $\sum_{k=0}^{n} S(n, k)(x)_{k}=x^{n}$.
Pf) We may assume x is a positive integer.
$x^{n}=\#$ functions $f:[n] \rightarrow[x]$.
$=\sum_{k=0}^{n}(\# f:[n] \rightarrow[x]$
with k efts in the image of f ex.

$$
=\sum_{k=0}^{n} S(n, k)(x)_{k}
$$

Def) A matching on a set X is a set pontition of X with blocks of size 1 or 2 . A block of size 1 is called a fixed point.
an edge
of an arc
If there are only blocks of size 2, then it is called a perfect matching (or complete

perfect matching.

Prop \# complete matching on $[2 n] \Rightarrow(2 n-1)(2 n-3) \cdots 3.1$.
is $(2 n-1)!!=1 \cdot 3 \cdot 5 \cdots(2 n-1)$.
\# matching on $[n]$

$$
=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 k}(2 k-1) I /
$$

Pf)

$$
12 \ldots 2 n
$$

* ways to connect $2 n=2 n-1$. with an integer
\# ways to connect max remaining integer $=2 n-3$

