Ch 4. Combinatorial model
Def) L: in ital. for OPS
\$4.1. Orthogonal polynomials and 3-term recurrence.

K: a field (ar a commutative ring if division is not used.)
$K[x]=$ ring of polys in x
with coeffs in K.
A linear function is a linear map
$\mathcal{L}: K[x] \rightarrow K$.
ins. $\quad \mathcal{L}(a f(x)+b g(x))=a \mathcal{L}(f(x))$ to $f(g(x))$.
The nth moment of \mathcal{L} is

$$
\mu_{n}=\mathscr{L}\left(x^{n}\right)
$$

Prop Suppose $\left\{p_{n}(x)\right\}_{n \geqslant 0}$ is ops fa \mathcal{L}. The $\left\{P_{n}(x)\right\}_{n \geqslant 0}$ is OPS for \mathcal{L}.
(1) $\left\{P_{n}(x)\right\}_{n \geqslant 0}$ is OPS for $\mathcal{L}^{\prime}:=a \mathcal{L} \Rightarrow \exists\left\{b_{n}\right\}_{n \geqslant 0,}\left\{\lambda_{n}\right\}_{n} \geqslant 1$ such that $(a \neq 0) \quad \lambda_{n} \neq 0$ and
(2) \mathcal{L} is uniquedy determined up to scalar multiplication.
(*) $p_{n+1}(x)=\left(x-b_{n}\right) p_{n}(x)-\lambda_{n} p_{n-1}(x) \quad \forall_{n} \geqslant 0$ $P_{-1}(x)=0, P_{0}(x)=1$.
(3) $\left\{a_{n} p_{n}(x)\right\}_{n \geqslant 0}$ is ops for \mathcal{L} $\forall a_{n} \neq 0$
From now on we always assume.
(1) $\operatorname{deg} p_{n}(x)=n$

Thu (Favard's the).
If $\left\{p_{n}(x)\right\}_{n \geqslant 0}$ satisfies * then it is OPS for some \mathcal{L}.
(2) $\mathscr{L}(1)=1$
(3) $P_{n}(x)$ is manic.

Goal: Find combinatorial models for $P_{n}(x)$ and μ_{n}.
And prove Favard's the.
§4.2. A model for OP using Favard tilings.

1 xn board:
ex). $n=8$

0	1	2	\cdots		$n-1$

Def). A Favard tiling of size n
is a filing of a $1 \times \mathrm{n}$ square board $T=$
with 3 types of tiles:
(1) red monomino \square
(2) black
(3) black domino
$F T_{n}=$ set of all Favard tilings of size n.
For $T \in F T n$, define

$$
\begin{aligned}
& \omega t(T)=\prod_{t \in T} \omega t(t) \\
& \omega t(\square)=x \\
& \omega t(\mid \bar{i})=-b_{i} \\
& \omega t(\underline{i-1 ; i})=-\lambda_{i}
\end{aligned}
$$

$$
\omega t(\tau)=x^{3} b_{3} b_{4} b_{7} \lambda_{1}
$$

Thu Suppose $\left\{P_{n}(x)\right\}$ satisfies

$$
\begin{aligned}
& P_{n+1}(x)=\left(x-b_{n}\right) p_{n}(x)-\lambda_{n} P_{n-1}(x) \quad \forall n \geqslant 0 \\
& p_{-1}(x)=0, P_{0}(x)=1
\end{aligned}
$$

$$
\Rightarrow p_{n}(x)=\sum_{T \in F T_{n}} w t(\tau)
$$

Pf) Easy by induction.
idea $\sum_{T \in F T_{n}} \omega t(\tau)$

$$
\begin{aligned}
& \Rightarrow \sum_{T \in F T_{n}} u+(T)=\left(x-b_{n-1}\right) p_{n-1}(x) \\
&-\lambda_{n-1} p_{n-2}(x)
\end{aligned}
$$

84.3. How to find a combinatorial

$$
0=\mathscr{L}\left(p_{1}(x)\right)=\mathscr{L}\left(x-b_{0}\right)=\mu_{1}-b_{0}
$$ model for moments.

$$
\Rightarrow \quad \mu_{1}=b_{0} .
$$

Note: $\mu_{n}=\mathscr{L}\left(X^{n}\right)$ is important

$$
0=\mathcal{L}\left(p_{2}(x)\right)=\mu_{2}-\left(b_{0}+b_{1}\right) \mu_{1}+b_{0} b_{1}-\lambda_{1}
$$ because they determine \mathcal{L}.

Suppose $\left\{P_{n}(x)\right\}_{n} \geqslant 0$ is OPS for \mathcal{L}.

$$
\Rightarrow M_{2}=\left(b_{0}+b_{1}\right) b_{0}-b_{0} b_{1}+\lambda_{1}
$$

Then

$$
=b_{0}^{2}+\lambda_{1}
$$

$$
\begin{array}{ll}
\mathcal{L}\left(P_{n}(x)\right)=\left\{\begin{array}{lll}
0 & \text { if } n \geqslant 1 & \mu_{3}=b_{0}^{3}+2 b_{0} \lambda_{1}+b_{1} \lambda_{1} \\
1 & \text { if } n=0 & \mu_{4}=b_{0}^{4}+3 b_{0}^{2} \lambda_{1}+2 b_{0} b_{1} \lambda_{1}+b_{1}^{2} \lambda_{1} \\
& +\lambda_{1}^{2}+\lambda_{1} \lambda_{2}
\end{array}\right. \\
\left(\because \mathcal{L}\left(P_{n}(x) P_{0}(x)\right)=\delta_{n, 0}\right) & \mu_{n} \geqslant 0 \quad \mu_{5}=\cdots \\
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x) \quad \\
P_{0}(x)=1 \\
P_{1}(x)=x-b_{0} & \\
\begin{aligned}
P_{2}(x)= & \left(x-b_{1}\right) P_{1}-\lambda_{1} P_{0} \\
& =\left(x-b_{1}\right)\left(x-b_{0}\right)-\lambda_{1}=x^{2}-\left(b_{0}+b_{1}\right) x+b_{0} b_{1}-\lambda_{1}
\end{aligned}
\end{array}
$$

If there is a nite combinatorial model for μ_{n}, we can hope

$$
\mu_{n}=\sum_{\pi \in A_{n}} \cot (\bar{a})
$$

Where $\omega t(\pi)$ is a monomial in $b_{i}\left\{, \lambda_{i}\right.$'s.

Let's put $b_{i}=\lambda_{i}=1$.

$$
\Rightarrow \quad \mu_{n}=\left|A_{n}\right| .
$$

In the case $h_{i}=\lambda_{i}=1$

$$
\begin{array}{cc}
\mu_{0}=1 & \mu_{3}=4 \\
\mu_{1}=1 & \mu_{5}=9 \\
\mu_{2}=2, & \vdots
\end{array}
$$

$$
1,1,2,4,9,21,51,12 \pi, 323, \ldots
$$

https:/l oeis.com
Guess if $b_{i}=\lambda_{i}=1$

$$
\mu_{n}=\left|M_{0} t_{n}\right|
$$

$$
\begin{aligned}
\mu_{4}=b_{0}^{4} & +3 b_{0}^{2} \lambda_{1}+2 b_{0} b_{1} \lambda_{1}+b_{1}^{2} \lambda_{1} \\
& +\lambda_{1}^{2}+\lambda_{1} \lambda_{2}
\end{aligned}
$$

Def). Let π be a Motzkin path. Thu $\mu_{n}=\sum_{\pi \in \operatorname{Mot}_{n}} w t(\pi)$ Define $\omega t(\pi)=\pi \omega t(s)$
s: step

$$
\text { of } \pi
$$

where

$$
\begin{aligned}
& \mu_{1}=b_{0} . \quad \longleftrightarrow \stackrel{b_{0}}{\longleftrightarrow} \\
& M_{2}=b_{0}^{2}+\lambda_{1} \text { bo bo a } \lambda_{1} \\
& \mu_{3}=h_{0}^{3}+2 b_{0} \lambda_{1}+b_{1} \lambda_{1}
\end{aligned}
$$

Def). $\left\{P_{n}(x)\right\}_{n \geq 0}$ is GPS for \mathcal{L}. The
For $n, r, s \geqslant 0$, the mixed moments

$$
\mu_{n, r, s}=\sum_{\pi \in \operatorname{Mot}((0, r) \rightarrow(n, s))} \omega t(\pi)
$$

$\mu_{n, r, s}, \mu_{n, k}$ of this OPS by

$$
\begin{aligned}
& \mu_{n, r, s}=\frac{\mathcal{L}\left(x^{n} p_{r}(x) p_{s}(x)\right)}{\mathcal{L}\left(p_{s}(x)^{2}\right)} \\
& \mu_{n, k}=\mu_{n, 0, k}=\frac{\mathscr{L}\left(x^{n} p_{k}(x)\right)}{\mathcal{L}\left(p_{k}(x)^{2}\right)}
\end{aligned}
$$

Note

$$
\mu_{n}=\mu_{n, 0,0}=\mu_{n, 0}
$$

