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Chapter 1

Introduction

Orthogonal polynomials are classical objects arising from the study of continued fractions. Due to
the long history of orthogonal polynomials, they have now become important objects of study in
many areas: classical analysis and PDE, mathematical physics, probability, random matrix theory,
and combinatorics.

The combinatorial study of orthogonal polynomials was pioneered by Flajolet and Viennot
in 1980s. In these lecture notes we will learn fascinating combinatorial properties of orthogonal
polynomials.

We will first study basic properties of orthogonal polynomials based on Chihara’s book, Chap-
ter 1 [2]. We will then focus on the combinatorial approach of orthogonal polynomials, which
will be based on Viennot’s lecture notes [9]. We will also cover more recent developments in the
combinatorics of orthogonal polynomials such as their connections with ASEP, staircase tableaux,
lecture hall partitions, and orthogonal polynomials of type R1.

In Chapter 2 we study elementary and classical results of orthogonal polynomials. In Chap-
ter 3 we review basics of enumerative combinatorics. Starting from Chapter 4 we focus on the
combinatorics of orthogonal polynomials.
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Chapter 2

Basics of orthogonal polynomials

In this chapter we will cover the first chapter of Chihara’s book [2].

2.1 Introduction

Since
2 cosmθ cosnθ = cos(m+ n)θ + cos(m− n)θ,

for nonnegative integers m and n, we have∫ π

0

cosmθ cosnθdθ = 0, m ̸= n. (2.1.1)

In this situation we say that cosmθ and cosnθ are orthogonal over the interval (0, π).
Note that cosnθ is a polynomial in cos θ of degree n. So we can write cosnθ = Tn(cos θ) for a

polynomial Tn(x) of degree x.
By the change of variable x = cos θ, (2.1.1) can be rewritten as∫ 1

−1

Tm(x)Tn(x)(1− x2)−1/2dx = 0, m ̸= n.

The polynomials Tn(x), n ≥ 0, are called the Tchebyshev polynomials of the first kind.
The first few polynomials are:

T0(x) = 1,

T1(x) = cos θ = x,

T2(x) = cos 2θ = 2 cos2 θ − 1 = 2x2 − 1,

T3(x) = 4x3 − 3x.

Recall that in an inner product space V with inner product ⟨·, ·⟩, a set of vectors v1, . . . , vn are
said to be orthogonal if ⟨vi, vj⟩ = 0 for all i ̸= j. In this sense the Tchebyshev polynomials Tn(x)
are orthogonal, where V = R[x] is the space of polynomials with real coefficients with the inner
product given by

⟨f(x), g(x)⟩ =
∫ 1

−1

f(x)g(x)(1− x2)−1/2dx.

We say that Tn(x) are orthogonal polynomials with respect to theweight function (1−x2)−1/2

on the interval (−1, 1).

Definition 2.1.1. Suppose that w(x) is a nonnegative and integrable function on (a, b) with∫ b

a
w(x)dx > 0 and

∫ b

a
xndx <∞ for all n ≥ 0. A sequence of polynomials {Pn(x)}n≥0 is called an

orthogonal polynomial sequence (OPS) with respect to the weight function (or measure)
w(x) on (a, b) if the following conditions hold:

4



CHAPTER 2. BASICS OF ORTHOGONAL POLYNOMIALS 5

(1) degPn(x) = n, for n ≥ 0,

(2)
∫ b

a
Pm(x)Pn(x)w(x)dx = 0 for m ̸= n.

There is another way to define orthogonal polynomials without using the weight function. For
a polynomial f(x), if we define

L(f(x)) =
∫ b

a

f(x)w(x)dx,

then L(f(x)) is completely determined by the moments µn =
∫ b

a
xnw(x)dx. So, if we are only

interested in polynomials, then we can define a linear functional L using a moment sequence
µ0, µ1, . . .. Not every sequence µ0, µ1, . . . gives rise to an OPS, though. We will see later a
criterion for a sequence to be a moment sequence.

Definition 2.1.2. Let L be a linear functional defined on the space of polynomials in x. A
sequence of polynomials {Pn(x)}n≥0 is called an orthogonal polynomial sequence (OPS)
with respect to L if the following conditions hold:

(1) degPn(x) = n, n ≥ 0,

(2) L(Pm(x)2) ̸= 0 for m ≥ 0,

(3) L(Pm(x)Pn(x)) = 0 for m ̸= n.

Note that the second condition above was not necessary in Definition 2.1.1 because it follows

from the facts that w(x) is nonnegative and
∫ b

a
w(x)dx > 0.

Remark 2.1.3. The moments of the Tchebyshev polynomials are

µ2n =

∫ 1

−1

x2n(1− x2)−1/2dx =
π

22n

(
2n

n

)
, µ2n+1 = 0.

This suggests that there could be some interesting combinatorics behind the scene. We will later
find a combinatorial way to understand this situation.

Example 2.1.4 (Charlier polynomials). The Charlier polynomials Pn(x) are defined by

Pn(x) =

n∑
k=0

(
x

k

)
(−a)n−k

(n− k)!
,

where
(
x
k

)
= x(x− 1) · · · (x− k + 1)/k!. We will find a different type of orthogonality for Pn(x).

The generating function for Pn(x) is

G(x,w) =
∑
n≥0

Pn(x)w
n =

∑
n≥0

(
n∑

k=0

(
x

k

)
(−a)n−k

(n− k)!

)
wn =

∑
n≥0

(
x

n

)
wn
∑
n≥0

(−a)m

m!
wm,

which means
G(x,w) = e−aw(1 + w)x.

Thus
axG(x, v)G(x,w) = e−a(v+w) (a(1 + v)(1 + w))

x
.

We have∑
k≥0

akG(k, v)G(k,w)

k!
=
∑
k≥0

e−a(v+w) (a(1 + v)(1 + w))
k

k!
= e−a(v+w)ea(1+v)(1+w) = eaeavw.
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Thus ∑
k≥0

akG(k, v)G(k,w)

k!
=
∑
n≥0

ea(avw)n

n!
. (2.1.2)

On the other hand∑
k≥0

akG(k, v)G(k,w)

k!
=
∑
k≥0

ak

k!

∑
m,n≥0

Pm(k)Pn(k)v
mwn

=
∑

m,n≥0

∑
k≥0

Pm(k)Pn(k)
ak

k!

 vmwn. (2.1.3)

Comparing the coefficients of vmwn in (2.1.2) and (2.1.3) we obtain

∑
k≥0

Pm(k)Pn(k)
ak

k!
=
eaan

n!
δn,m. (2.1.4)

Therefore, if we define a linear functional L by

L(xn) =
∑
k≥0

kn
ak

k!
,

then Pn(x) are orthogonal polynomials with respect to L.
Note that we describe the orthogonality of Pn(x) using only the linear functional L without

referring to any weight function. However, we can also find a weight function in this case. Let
ψ(x) be the step function with a jump at k = 0, 1, 2, . . . of magnitude ak/k!. Then the linear
functional L can be written as the following Riemann–Stieltjes integral

L(f(x)) =
∫ ∞

−∞
f(x)dψ(x).

We can also prove (2.1.4) in a combinatorial way, see Appendix A.

Remark 2.1.5. In the theory of orthogonal polynomials, finding an explicit weight function is an
important problem. However, in these lecture notes, we will not pursue in this direction and we
will be mostly satisfied with Definition 2.1.2.

2.2 The moment functional and orthogonality

We will consider the space C[x] of polynomials with complex coefficients. A linear functional
on C[x] is a map L : C[x] → C such that L(af(x) + bg(x)) = aL(f(x)) + bL(g(x)) for all
f(x), g(x) ∈ C[x] and a, b ∈ C.

Definition 2.2.1. Let {µn}n≥0 be a sequence of complex numbers. Let L be the linear functional
on the space of polynomials defined by L(xn) = µn, n ≥ 0. In this case we say that L is the
moment functional determined by the moment sequence {µn}, and µn is called the nth
moment.

We recall the definition of orthogonal polynomials.

Definition 2.2.2. Let L be the linear functional defined on the space of polynomials in x. A
sequence of polynomials {Pn(x)}n≥0 is called an orthogonal polynomial sequence (OPS)
with respect to L if the following conditions hold:

(1) degPn(x) = n, n ≥ 0,
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(2) L(Pm(x)Pn(x)) = Knδm,n, for some Kn ̸= 0.

We say that Pn(x) are orthonormal if L(Pm(x)Pn(x)) = δm,n.

Theorem 2.2.3. Let {Pn(x)} be a sequence of polynomials and let L be a linear functional. The
following are equivalent:

(1) {Pn(x)} is an OPS with respect to L;

(2) L(π(x)Pn(x)) = 0 if deg π(x) < n and L(π(x)Pn(x)) ̸= 0 if deg π(x) = n;

(3) L(xmPn(x)) = Knδm,n, 0 ≤ m ≤ n, for some Kn ̸= 0.

Proof. (1) ⇒ (2): Suppose that deg π(x) ≤ n. Since {Pn(x)} is a basis of C[x], we can write

π(x) = c0 + c1P1(x) + · · ·+ cnPn(x).

Then

L(π(x)Pn(x)) =

n∑
k=0

L (ckPk(x)Pn(x)) = cnL(Pn(x)
2),

which is zero if deg π(x) < n and nonzero if deg π(x) = n.
(2) ⇒ (3): Trivial. (2) ⇒ (3): Trivial.

Theorem 2.2.4. Suppose that {Pn(x)}n≥0 be an OPS with respect to L. Then for any polynomial
π(x) of degree n,

π(x) =

n∑
k=0

ckPk(x), ck =
L(π(x)Pk(x))

L(Pk(x)2)
.

Proof. Clearly, we can write

π(x) =

n∑
k=0

ckPk(x),

for some ck. Multiplying Pj(x) both sides and taking L, we get

L(π(x)Pj(x)) =

n∑
k=0

L (ckPk(x)Pj(x)) = cjL(Pj(x)
2).

Dividing both sides by L(Pj(x)
2), we obtain the theorem.

Theorem 2.2.5. Suppose that {Pn(x)}n≥0 be an OPS with respect to L. Then Pn(x) is uniquely
determined by L up to a nonzero factor. More precisely, if {Qn(x)}n≥0 is an OPS with respect to
L, then there are constants cn ̸= 0 such that Qn(x) = cnPn(x) for all n ≥ 0.

Proof. Let us writeQn(x) =
∑n

k=0 ckPk(x). Then by Theorem 2.2.4, ck = L(Qn(x)Pk(x))/L(Pk(x)
2).

But by Theorem 2.2.3, L(Qn(x)Pk(x)) = 0 unless k = n. Thus Qn(x) = cnPn(x).

Note that if {Pn(x)}n≥0 is an OPS for L, then so is {cnPn(x)}n≥0 for any cn ̸= 0. Therefore
there is a unique monic OPS, which is obtained by dividing each Pn(x) by its leading coefficient.
Note also that there is a unique orthonormal OPS as well given by pn(x) = Pn(x)/L(Pn(x)

2)1/2.
In summary we have the following corollary.

Corollary 2.2.6. Suppose that L is a moment sequence such that there is an OPS for L. Let Kn,
n ≥ 0, be a sequence of nonzero numbers. Then the following hold.

(1) There is a unique monic OPS {Pn(x)}n≥0 for L.

(2) There is a unique OPS {Pn(x)}n≥0 for L such that the leading coefficient of Pn(x) is Kn.

(3) There is a unique OPS {Pn(x)}n≥0 for L such that L(xnPn(x)) = Kn.

Clearly, if {Pn(x)}n≥0 is an OPS for L, then it is also an OPS for L′ given by L′(f(x)) =
cL(f(x)) for some c ̸= 0. Therefore, by dividing the linear functional by the value L(1), we may
assume that L(1) = 1.
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2.3 Existence of OPS

The main question in this section is: for what linear functional L does there exist an OPS? To
answer this question we need the following definition.

Definition 2.3.1. The Hankel determinant of a moment sequence {µn} is defined by

∆n = det(µi+j)
n
i,j=0 =

∣∣∣∣∣∣∣∣∣
µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn µn+1 · · · µ2n

∣∣∣∣∣∣∣∣∣ .
Theorem 2.3.2. Let L be a linear functional with moment sequence {µn}. Then there is an OPS
for L if and only if ∆n ̸= 0 for all n ≥ 0.

Proof. Fix a sequence {Kn} of nonzero real numbers Kn. By Corollary 2.2.6, if there is an OPS
{Pn(x)}n≥0 for L, it is uniquely determined by the condition L(xnPn(x)) = Kn, n ≥ 0. In
other words, using Theorem 2.2.3, there is an OPS for L if and only if there is a unique sequence
{Pn(x)}n≥0 of polynomials such that

L(xmPn(x)) = Knδm,n, 0 ≤ m ≤ n. (2.3.1)

Now let Pn(x) =
∑n

k=0 cn,kx
k. Multiplying both sides by xm and taking L, we get

L(xmPn(x)) =

n∑
k=0

cn,kµn+k.

Thus (2.3.1) can be written as the matrix equation
µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn µn+1 · · · µ2n



cn,0
cn,1
...

cn,n

 =


0
...
0
Kn

 . (2.3.2)

Then the uniqueness of the polynomials Pn(x) satisfying (2.3.1) is equivalent to the uniqueness
of the solution of the matrix equation (2.3.2) in cn,0, cn,1, . . . , cn,n. In order for (2.3.2) to have a
unique solution, the Hankel determinant ∆n must be nonzero for all n ≥ 0. Moreover, by Cramer’s
rule, cn,n = Kn∆n/∆n−1 is nonzero iff ∆n ̸= 0. This proves the theorem.

Applying Cramer’s rule to (2.3.2) we can prove the following lemma, which will be used later.

Lemma 2.3.3. Let {Pn(x)}n≥0 be an OPS for L. Then for a polynomial π(x) of degree n we
have

L(π(x)Pn(x)) =
ab∆n

∆n−1
,

where a and b are the leading coefficients of π(x) and Pn(x), respectively. In particular, if
{Pn(x)}n≥0 is the monic OPS for L, then

L(Pn(x)
2) =

∆n

∆n−1
.

Proof. We use the notation in the proof of Theorem 2.3.2. By solving (2.3.2) using Cramer’s
rule, we obtain that the leading coefficient of Pn(x) is b = cn,n = Kn∆n−1/∆n. Thus, if we let
π(x) =

∑n
k=0 akx

k, we have

L(π(x)Pn(x)) =

n∑
k=0

L(akxkPn(x)) = anL(xnPn(x)) = aKn =
ab∆n

∆n−1
,

as desired.
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Similarly every coefficient cn,i of Pn(x) can be computed using (2.3.2). Thus we have an
explicit determinant formula for Pn(x).

Theorem 2.3.4. Let L be a linear functional with moment sequence {µn} with ∆n ̸= 0 for all
n ≥ 0. Then the monic OPS for L is given by

Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. This can be proved using (2.3.2). We can also prove directly that {Pn(x)}n≥0 satisfies the
conditions for an OPS. First, the coefficient of xn in Pn(x) is 1, so degPn(x) = n. For 0 ≤ k ≤ n,
we have

L(xkPn(x)) =
1

∆n−1
L



∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn · · · µ2n−1

xk xk+1 · · · xn+k

∣∣∣∣∣∣∣∣∣∣∣

 =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn · · · µ2n−1

µk µk+1 · · · µn+k

∣∣∣∣∣∣∣∣∣∣∣
.

If k < n, then the right-hand side of the above equation has two identical rows, hence zero. If
k = n, the right-hand side is ∆n/∆n−1 ̸= 0. This implies that {Pn(x)}n≥0 is an OPS for L.

In many important cases of orthogonal polynomials there is a nonnegative weight function

w(x) representing the moment functional: L(xn) =
∫ b

a
xnw(x)dx. In more general cases, L can

be represented using the Riemann–Stieltjes integral L(xn) =
∫ b

a
xndψ(x), where ψ(x) is a non-

decreasing function such that {x : ψ(x + ϵ) − ψ(x − ϵ) > 0 for all ϵ > 0} is an infinite set. It is
known [2, Chapter 2] that there is such an expression if and only if L(π(x)) > 0 for all nonzero
polynomials π(x) such that π(x) ≥ 0 for all x ∈ R.

A nonnegative-valued polynomial is a polynomial π(x) such that π(x) ≥ 0 for all x ∈ R.

Definition 2.3.5. A linear functional L is positive-definite if L(π(x)) > 0 for all nonzero
nonnegative-valued polynomials π(x).

If L is positive-definite, then it has a real OPS. We will see later that the converse is not true.

Theorem 2.3.6. Let L be a positive-definite linear functional. Then L has real moments and
there is a real OPS for L.

Proof. First, we show that the moments µn are real. Since L is positive-definite, µ2n = L(x2n) > 0

is real. Since L((x+ 1)2n) =
∑2n

k=0

(
2n
k

)
µk is real, by induction, we obtain that µ2n−1 is also real.

Now, we construct a real OPS {Pn(x)}n≥0 for L. Let P0(x) = 1. Suppose that we have
constructed real polynomials P0, . . . , Pn which are orthogonal with respect to L, i.e., for 0 ≤ i, j ≤
n, L(Pi(x)Pj(x)) is zero if i ̸= j and nonzero if i = j. Now we need to find

Pn+1(x) = xn+1 +

n∑
k=0

akPk(x) (2.3.3)

such that L(Pk(x)Pn+1(x)) = 0 for all 0 ≤ k ≤ n. Multiplying Pk(x) and taking L in (2.3.3) we
get L(Pk(x)Pn+1(x)) = L(xn+1Pk(x)) + akL(Pk(x)

2). Thus, if we set

ak = −L(xn+1Pk(x))

L(Pk(x)2)
,

which is real, then Pn+1(x) is orthogonal to P0(x), . . . , Pn(x). In this way we can construct a real
OPS {Pn(x)}n≥0 for L.
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Note that if L is positive-definite, then L(Pn(x)
2) > 0. Thus in this case we can construct a

real orthonormal OPS {pn(x)}n≥0 by rescaling: pn(x) = Pn(x)/
√

L(Pn(x)2).
Nonnegative-valued polynomials have the following useful property.

Lemma 2.3.7. Let π(x) be a nonnegative-valued polynomial. Then π(x) = p(x)2+q(x)2 for some
real polynomials p(x) and q(x).

Proof. Since π(x) is real for all real x, the coefficients of π(x) are real. This can be seen inductively
by observing that if deg π(x) = n, then the leading coefficient of π(x) is equal to

lim
x→∞

π(x)

xn
.

Since π(x) is a real polynomial such that π(x) ≥ 0, every real zero of π(x) has even multiplicity
and complex roots appear in conjugate pairs. Thus we can write

π(x) = r(x)2
m∏

k=1

(x− αk − βki)(x− αk + βki),

where r(x) is a real polynomial and αk, βk ∈ R. If we write
∏m

k=1(x− αk − βki) = A(x) + iB(x),
then

∏m
k=1(x− αk + βki) = A(x)− iB(x). Thus π(x) = r(x)2(A(x)2 +B(x)2) as desired.

By Lemma 2.3.7, we have the following criterion for linear functionals.

Corollary 2.3.8. A linear functional L is positive-definite if and only if L(p(x)2) > 0 for every
nonzero real polynomial p(x).

You may wonder why L is called “positive-definite”. To see this recall that a real n×n matrix
A is positive definite if uTAu > 0 for every nonzero vector u ∈ Rn. Sylvester’s criterion says that
A is positive definite if and only if every principal minor of A is positive. The following theorem
justifies the terminology “positive-definite” for L.

Theorem 2.3.9. A linear functional L is positive-definite if and only if every moment µn is real
and ∆n > 0 for all n ≥ 0. In other words, L is positive-definite if and only if the Hankel matrix
(µi+j)

n
i,j=0 is positive-definite for all n ≥ 0.

Proof. (⇒) By Theorem 2.3.6, the moments are real and there is a real OPS {Pn(x)}n≥0 for L.
By Lemma 2.3.3, ∆n/∆n−1 = L(Pn(x)

2) > 0 for n ≥ 0, where ∆−1 = 1. Thus by induction we
obtain ∆n > 0 for all n ≥ 0.

(⇐) Since ∆n > 0, by Theorem 2.3.2, there is an OPS {Pn(x)}n≥0 for L. By Corollary 2.3.8,
it suffices to show that L(p(x)2) > 0 for any nonzero real polynomial p(x). To do this let p(x) =∑n

k=0 akPk(x). Then by the orthogonality,

L(p(x)2) =
n∑

k=0

a2kL(Pk(x)
2).

Since ∆n > 0, we have L(Pk(x)
2) > 0 by Lemma 2.3.3. Thus L(p(x)2) > 0 as desired.

2.4 The three-term recurrence

One important property of orthogonal polynomials is that they satisfy a 3-term recurrence relation.

Theorem 2.4.1. Let L be a linear functional with monic OPS {Pn(x)}n≥0. Then these monic
orthogonal polynomials satisfy the following 3-term recurrence relation:

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 0, (2.4.1)

with initial conditions P−1(x) = 0 and P0(x) = 1 for some sequences {bn}n≥0 and {λn}n≥1 such
that λn ̸= 0.
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Proof. Since Pn(x) are monic polynomials, Pn+1(x)− xPn(x) has degree at most n. Thus we can
write

Pn+1(x)− xPn(x) =

n∑
k=0

akPk(x).

By Theorem 2.2.3, multiplying both sides by Pj(x) for 0 ≤ j ≤ n− 2 and taking L gives

0 = L(Pj(x)Pn+1(x)− xPj(x)Pn(x)) =

n∑
k=0

akL(Pj(x)Pk(x)) = ajL(Pj(x)
2).

Since L(Pj(x)
2) ̸= 0, we obtain aj = 0 for all 0 ≤ j ≤ n − 2. Then we alway have Pn+1(x) −

xPn(x) = anPn(x) + an−1Pn−1(x) for some constants an and an−1. This implies that the polyno-
mials Pn(x) satisfy the 3-term recurrence relation (2.4.1).

It remains to show that λn ̸= 0. Multiplying xn−1 both sides of (2.4.1) and taking L gives

0 = L(xn−1Pn+1(x)) = L(xnPn(x))− bnL(xn−1Pn(x))− λnL(xn−1Pn−1(x)). (2.4.2)

By Lemma 2.3.3, we have L(xnPn(x)) = L(Pn(x)Pn(x)). Thus (2.4.2) implies

λn =
L(Pn(x)

2)

L(Pn−1(x)2)
. (2.4.3)

Since L(Pn(x)
2) ̸= 0, we get λn ̸= 0.

Theorem 2.4.2. Following the notation in Theorem 2.4.1, we have

λn =
L(Pn(x)

2)

L(Pn−1(x)2)
=

∆n−2∆n

∆2
n−1

, (2.4.4)

bn =
L(xPn(x)

2)

L(Pn(x)2)
, (2.4.5)

L(Pn(x)
2) = λ1 · · ·λnL(1) =

∆n

∆n−1
, (2.4.6)

∆n = λn1λ
n−1
2 · · ·λ1nL(1)n+1. (2.4.7)

Proof. By Lemma 2.3.3, we have L(Pn(x)
2) = ∆n/∆n−1. Thus the first identity (2.4.4) follows

from (2.4.3).
Multiplying Pn(x) both sides of (2.4.1) and taking L gives

0 = L(Pn(x)Pn+1(x)) = L(xPn(x)
2)− bnL(Pn(x)

2)− λnL(PnPn−1(x))

= L(xPn(x)
2)− bnL(Pn(x)

2),

which implies (2.4.5).
The identity (2.4.6) is an immediate consequence of (2.4.4). The identity (2.4.7) follows from

(2.4.6).

Corollary 2.4.3. Following the notation in Theorem 2.4.1, the linear functional L is positive-
definite if and only if bn ∈ R and λn > 0 for all n and L(1) > 0.

Proof. Suppose that L is positive-definite. Then by Theorem 2.3.6 the polynomials Pn(x) are real,
hence the recurrence coefficients bn and λn are real. By Theorem 2.3.9, we have ∆n > 0, which
together with (2.4.4) implies λn > 0.

Now suppose that bn ∈ R and λn > 0 for all n. By (2.4.4) and (2.4.5), one can easily check by
induction that all the moments are real. By (2.4.7), we have ∆n > 0. Thus by Theorem 2.3.9, L
is positive-definite.
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Oftentimes non-monic orthogonal polynomials are used in the literature. We can always make
them monic by dividing each polynomial by its leading coefficient. This allows us to convert a
3-term recurrence of monic orthogonal polynomials to that of non-monic orthogonal polynomials
and vice versa.

Suppose that {Pn(x)}n≥0 is an OPS for L, which is not monic. If kn is the leading coefficient
of Pn(x), then the monic OPS for L is given by {p̂n(x)}n≥0, where p̂n(x) = Pn(x)/kn. Then, by
Theorem 2.4.1, we have

p̂n+1(x) = (x− bn)p̂n(x)− λnp̂n−1(x), n ≥ 0; p̂−1(x) = 0, p̂0(x) = 1. (2.4.8)

Substituting p̂n(x) = Pn(x)/kn in the above formula, we get

Pn+1(x) = (Anx−Bn)Pn(x)− CnPn−1(x), n ≥ 0; P−1(x) = 0, P0(x) = k0, (2.4.9)

where An = kn+1/kn, Bn = bnkn+1/kn, and Cn = λnkn+1/kn−1.
Conversely, from the recurrence (2.4.9), the leading coefficient of Pn(x) is kn = An−1An−2 · · ·A0k0.

Hence
p̂n(x) = (An−1An−2 · · ·A0k0)

−1Pn(x),

and we can obtain the recurrence (2.4.8) by dividing (2.4.9) by AnAn−1 · · ·A0k0.

Example 2.4.4. Since

cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ, n ≥ 1,

we have
Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.

Since T0(x) = 1 and T1(x) = x, we have

Tn+1(x) = AnxTn(x)− Tn−1(x), n ≥ 0, (2.4.10)

where T−1(x) = 0, A0 = 1 and An = 2 for n ≥ 1. Thus the monic Tchebyshev polynomials are
given by T̂n(x) = 21−nTn(x) for n ≥ 1. Dividing (2.4.10) by 2n gives

T̂n+1(x) = xT̂n(x)− λnT̂n−1(x), n ≥ 0, (2.4.11)

where λ1 = 1/2 and λn = 1/4 for n ≥ 2.

Note that in the recurrence (2.4.11) for the (monic) Tchebyshev polynomials, bn = 0. This, in
fact, implies that T2n(x) is an even function and T2n+1(x) is an odd function. It also turns out
that the odd moments are all zero.

Definition 2.4.5. A linear functional L is symmetric if all of its odd moments are zero.

Theorem 2.4.6. Let L be a linear functional with monic OPS {Pn(x)}n≥0. The following are
equivalent:

(1) L is symmetric.

(2) Pn(−x) = (−1)nPn(x) for n ≥ 0.

(3) In the 3-term recurrence (2.4.1), bn = 0 for n ≥ 0.

Proof. (1) ⇒ (2): Since L is symmetric, L(π(−x)) = L(π(x)) for all polynomials π(x). Thus
L(Pm(−x)Pn(−x)) = L(Pm(x)Pn(x)) = Knδm,n. By the uniqueness of orthogonal polynomials,
Theorem 2.2.5, we have Pn(−x) = cnPn(x) for some cn ̸= 0. Comparing their leading coefficients,
we obtain cn = (−1)n.

(2) ⇒ (1): Since P2n+1(−x) = −P2n+1(x), P2n+1(x) is an odd polynomial. Thus L(P2n+1(x)) =
0 is a sum of odd moments. This shows by induction that all odd moments are zero.
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(2) ⇔ (3): LetQn(x) = (−1)nPn(−x). Then the condition in (2) is the same as Pn(x) = Qn(x).
By Theorem 2.4.1, we have

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x),

Qn+1(x) = (x+ bn)Qn(x)− λnQn−1(x),

where the second recurrence is obtained from the first by replacing x by −x and multiplying both
sides by (−1)n+1. Clearly, the condition Pn(x) = Qn(x) is equivalent to bn = 0, n ≥ 0.

Recall Theorem 2.4.1, which states that orthogonal polynomials satisfy a 3-term recurrence.
The converse of this theorem is also true.

Theorem 2.4.7 (Favard’s theorem). Let {Pn(x)}n≥0 be a sequence of monic polynomials. Then
there is a (unique) linear functional L with L(1) = 1 for which {Pn(x)}n≥0 is an OPS if and only
if

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 0, (2.4.12)

for some sequences {bn}n≥0 and {λn}n≥1 of complex numbers with λn ̸= 0. Moreover, L is
positive-definite if and only if bn ∈ R and λn > 0 for all n ≥ 1.

Proof. The “only if” part is done in Theorem 2.4.1. To prove the “if” part, we assume λn ̸= 0 for
all n ≥ 1. Note that if {Pn(x)}n≥0 is an OPS for L, then we must have L(Pn(x)) = 0 for n ≥ 1.
This together with L(1) = 1 completely determines the moments of L. Thus we define L to be
the unique linear functional such that L(1) = 1 and L(Pn(x)) = 0 for n ≥ 1. We need to show
that {Pn(x)}n≥0 is indeed an OPS for L. By Theorem 2.2.3, it suffices to show that

L(xkPn(x)) = λ1 · · ·λnδk,n, 0 ≤ k ≤ n. (2.4.13)

We will prove this by induction on k. By the constriction of L, (2.4.13) is true when k = 0. Let
k ≥ 1 and suppose that (2.4.13) holds for k−1. To prove (2.4.13) for k, consider an integer n ≥ k.
Multiplying xk−1 to (2.4.12), we get

xkPn(x) = xk−1Pn+1(x) + bnx
k−1Pn(x) + λnx

k−1Pn−1(x).

By the induction hypothesis, taking L in the above formula gives

L(xkPn(x)) =

{
0 if 1 ≤ k ≤ n− 1,

λnL(xn−1Pn−1(x)) if k = n.

Thus (2.4.13) also holds for k, and the claim is established.
The “moreover” statement follows from Corollary 2.4.3.

2.5 Christoffel–Darboux identities and zeros of orthogonal
polynomials

The Christoffel–Darboux identities are useful identities which have many applications in the theory
of orthogonal polynomials. In this section we prove these identities and and their application to
the zeros of orthogonal polynomials.

Theorem 2.5.1 (The Christoffel–Darboux identities). Let {Pn(x)}n≥0 be given by the 3-term
recurrence (2.4.1). For n ≥ 0, we have

n∑
k=0

Pk(x)Pk(y)

λ1 · · ·λk
=
Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

λ1 · · ·λn(x− y)
, (2.5.1)

n∑
k=0

Pk(x)
2

λ1 · · ·λk
=
P ′
n+1(x)Pn(x)− Pn+1(x)P

′
n(x)

λ1 · · ·λn
. (2.5.2)
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Proof. Multiply Pn(y) to (2.4.1) to get

Pn+1(x)Pn(y) = (x− bn)Pn(x)Pn(y)− λnPn−1(x)Pn(y). (2.5.3)

Interchanging x and y in (2.5.3) gives

Pn+1(y)Pn(x) = (y − bn)Pn(x)Pn(y)− λnPn−1(y)Pn(x). (2.5.4)

Subtracting (2.5.4) from (2.5.3), we have

Pn+1(x)Pn(y)− Pn+1(y)Pn(x) = (x− y)Pn(x)Pn(y) + λn(Pn(x)Pn−1(y)− Pn(y)Pn−1(x)).

Let fk = Pk+1(x)Pk(y)−Pk+1(y)Pk(x). Then we can rewrite the above equation (with n replaced
by k) as

(x− y)Pk(x)Pk(y) = fk − λkfk−1.

Dividing both sides by λ1 · · ·λk(x− y) gives

Pk(x)Pk(y)

λ1 · · ·λk
=

fk
λ1 · · ·λk(x− y)

− fk−1

λ1 · · ·λk−1(x− y)
.

Summing the equation for k = 0, . . . , n, we obtain (2.5.1).
Rewriting (2.5.1) as

n∑
k=0

Pk(x)Pk(y)

λ1 · · ·λk
=

(Pn+1(x)− Pn+1(y))Pn(y)− Pn+1(y)(Pn(x)− Pn(y))

λ1 · · ·λn(x− y)

and taking the limit y → x gives (2.5.2).

The Christoffel–Darboux identities have an interesting application on the zeros of orthogonal
polynomials. We first show that orthogonal polynomials have distinct real zeros if L is positive-
definite.

Lemma 2.5.2. Let L be a positive-definite linear functional with monic OPS {Pn(x)}n≥0. Then
Pn(x) has n distinct real roots for all n ≥ 1.

Proof. Since L(Pn(x)) = 0, Pn(x) must have a root of odd multiplicity. (Because otherwise
Pn(x) ≥ 0 for all x ∈ R, which in turn implies L(Pn(x)) > 0 by the assumption that L is
positive-definite.) Let x1, . . . , xk be the distinct roots of Pn(x) with odd multiplicities. Then
(x− x1) · · · (x− xk)Pn(x) ≥ 0 for all x ∈ R. Therefore L((x− x1) · · · (x− xk)Pn(x)) > 0. But by
Theorem 2.2.3 this implies k ≥ n. Clearly, k ≤ n and we obtain k = n. This means that Pn(x)
has n distinct roots.

Theorem 2.5.3. Let L be a positive-definite linear functional with monic OPS {Pn(x)}n≥0. Then
Pn(x) has n distinct real roots for all n ≥ 1 and the zeros of Pn(x) and Pn+1(x) interlace. More
precisely, if xn,1 > xn,2 > · · · > xn,n are the zeros of Pn(x), then

xn+1,1 > xn,1 > xn+1,2 > xn,2 > · · · > xn+1,n > xn,n > xn+1,n+1. (2.5.5)

Proof. The first part is proved in Lemma 2.5.2. For the second part, we substitute x = xn,j in
(2.5.2) to get

0 <

n∑
k=0

Pk(xn,j)
2

λ1 · · ·λk
=
P ′
n+1(xn,j)Pn(xn,j)− Pn+1(xn,j)P

′
n(xn,j)

λ1 · · ·λn
=

−Pn+1(xn,j)P
′
n(xn,j)

λ1 · · ·λn
.

This implies that the sign of Pn+1(xn,j) is the opposite of the sign of P ′
n(xn,j). Considering

the graph of y = Pn(x), the sign of P ′
n(xn,j) is (−1)j−1, see Figure 2.1. Thus the sign of

Pn+1(xn,j), for j = 1, 2, . . . , n, is (−1)j as indicated by the red dots in Figure 2.1. This means
that Pn+1(x) has a root between each interval (xn,j+1, xn,j) for j = 1, . . . , n− 1. Considering the
limits limx→∞ Pn+1(x) = ∞ and limx→−∞ Pn+1(x) = (−1)n+1∞, we can see that Pn+1(x) also
has one root in (xn,1,∞) and one root in (−∞, xn,n). Thus we obtain (2.5.5).
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xn+1,n+1
xn+1,1xn+1,2 xn,1xn,2

xn,n xn,n−1

Figure 2.1: The interchanging zeros of Pn(x) and Pn+1(x).



Chapter 3

Basics of enumerative
combinatorics

In this chapter we review fundamental objects in enumerative combinatorics. From now on we
will use the notation [n] := {1, . . . , n}.

3.1 Formal power series and generating functions

In this section, we study basics of formal power series and generating functions. See [10] for more
details on this topic.

A power series is a series of the form

f(x) = a0 + a1x+ a2x
2 + · · · .

The quantity an is called the coefficient of xn in f(x). The constant term of f(x) is a0, which
we also denote by f(0).

If the coefficients an are real numbers, then f(x) may be considered as a function on x whose
domain is the set of real numbers x such that the above infinite series converges. For example, if

f(x) = 1 + x+ x2 + · · · ,

then we have f(x) = 1/(1− x) for |x| < 1. Thus we can write, for |x| < 1,

1 + x+ x2 + · · · = 1

1− x
. (3.1.1)

This, however, does not make sense if |x| > 1. Hence, in calculus, whenever we consider a power
series we always have to mention for what values of x the series converges. But in formal power
series the convergence is not needed.

Let R be a commutative ring with identity. Recall that R[x] denotes the ring of polynomials
in x with coefficients in R.

Definition 3.1.1. The ring of formal power series in x with coefficients in R is the set

R[[x]] = {a0 + a1x+ a2x
2 + · · · : a0, a1, a2, . . . ∈ R},

with addition ( ∞∑
n=0

anx
n

)
+

( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(an + bn)x
n,

and multiplication ( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
=

∞∑
n=0

(
n∑

k=0

akbn−k

)
xn.

16
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So, roughly speaking, a formal power series is a polynomial of infinite degree.
The multiplicative identity of R[[1]] is 1, that is, 1 + 0x+ 0x2 + · · ·. For f(x), g(x) ∈ R[[1]], if

f(x)g(x) = 1, then we say that f(x) is the inverse of g(x) and write f(x) = g(x)−1 = 1/g(x).
In the language of formal power series, (3.1.1) is a perfectly valid identity without any conver-

gence considered because

(1 + x+ x2 + · · · )(1− x) = (1 + x+ x2 + · · · )− x(1 + x+ x2 + · · · ) = 1.

An important aspect of formal power series is that the coefficient of xn must be computed
using a finitely many additions and multiplications in R.

Example 3.1.2. The series

e1+x =
∑
n≥0

(1 + x)n

n!

is not a formal power series in R[[x]] because the constant term (the coefficient of x0) is
∑

n≥0 1/n!,
which cannot be computed by a finite number of additions and multiplications in R (although we
know

∑
n≥0 1/n! = e). On the other hand,

e · ex =
∑
n≥0

exn

n!

is a formal power series in R[[x]].

Note that being a formal power series is all about how the series is presented rather than what
values the series take as a function. Most of the time, we will not consider a formal power series
as a function.

For two formal power series f(x) =
∑

n≥0 fnx
n and g(x) =

∑
n≥0 gnx

n with g0 = 0, we define
the composition (f ◦ g)(x) = f(g(x)) of f(x) and g(x) by

f(g(x)) =
∑
n≥0

fng(x)
n. (3.1.2)

To see that the above sum is a formal power series, note that since g0 = 0, every term in fng(x)
n

has degree at least n. Thus, for a fixed m ≥ 0, the coefficient of xm in f(g(x)) is the coefficient
of xm in the finite sum

∑m
n=0 fng(x)

n of formal power series, which in turn can be computed in
a finite number of additions and multiplications in R. Note also that if g0 ̸= 0, then the constant
term in the sum (3.1.2) is an infinite sum

∑
n≥0 fng0, hence f(g(x)) is not a formal power series

(unless f(x) is a polynomial).
There is a simple criterion for the existence of an inverse of a formal power series.

Proposition 3.1.3. Let R be a field. A formal power series f(x) ∈ R[[x]] has an inverse if and
only if f(0) ̸= 0.

Proof. (⇒) Let g(x) be the inverse of f(x). Suppose that f(0) = 0. Then the constant term of
f(x)g(x) is f(0)g(0) = 0, which is a contradiction to f(x)g(x) = 1. Thus we have f(0) ̸= 0.

(⇐) Let f(x) =
∑

n≥0 fnx
n. Then we can write f(x) as

f(x) = f0 (1− h(x)) , h(x) =
∑
n≥1

hnx
n, hn = −f−1

0 fn.

Then the inverse of f(x) can be found in this way:

1

f(x)
=

1

f0
· 1

1− h(x)
=

1

f0

∑
n≥0

h(x)n.

Since the lowest degree term of h(x)n has degree at least n, the above infinite sum is a well-defined
formal power series.
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As in calculus we define the derivative of a formal power series f(x) =
∑

n≥0 fnx
n by

f ′(x) :=
∑
n≥1

nfnx
n−1 =

∑
n≥0

(n+ 1)fn+1x
n.

The usual differentiation rules hold.

Proposition 3.1.4. For two formal power series f(x) and g(x), we have

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x),(
f(x)

g(x)

)′

=
f ′(x)g(x)− f(x)g′(x)

g(x)2
, g(x) ̸= 0,

(f(g(x)))′ = f ′(g(x))g′(x), g(0) = 0.

Proof. We can prove these identities using the formal definition of the derivative. We will only
proof the first identity. Let f(x) =

∑
n≥0 fnx

n and g(x) =
∑

n≥0 gnx
n. Then

(f(x)g(x))′ =

∑
n≥0

(
n∑

k=0

fkgn−k

)
xn

′

=
∑
n≥0

(
n∑

k=0

nfkgn−k

)
xn−1.

On the other hand,

f ′(x)g(x) + f(x)g′(x) =
∑
n≥0

nfnx
n−1

∑
n≥0

gnx
n +

∑
n≥0

fnx
n
∑
n≥0

ngnx
n−1

=
∑
n≥0

(
n∑

k=0

kfkgn−k +

n∑
k=0

fk · (n− k)gn−k

)
xn−1

=
∑
n≥0

(
n∑

k=0

nfkgn−k

)
xn−1.

Thus we get the first identity.

We can naturally extend the definition of formal power series to the multivariate case.

Definition 3.1.5. Let x = (x1, x2, . . . ) be a sequence of variables. Let Z denote the set of
sequences I = (i1, i2, . . . ) ∈ Z∞

≥0 such that i1 + i2 + · · · < ∞. For I = (i1, i2, . . . ) ∈ Z, we write

xI = xi11 x
i2
2 · · ·. The ring of formal power series in x1, x2, . . . with coefficients in R is the set

R[[x]] =

{∑
I∈Z

aIx
I : aI ∈ R

}
,

with addition (∑
I∈Z

aIx
I

)
+

(∑
I∈Z

bIx
I

)
=

(∑
I∈Z

(aI + bI)x
I

)
,

and multiplication(∑
I∈Z

aIx
I

)(∑
I∈Z

bIx
I

)
=
∑
I∈Z

 ∑
I1,I2∈Z,I1+I2=I

aI1bI2

xI .

Again, rougly speaking, a multivariate formal power series is a multivariate polynomial of
infinite degree.

Now we define the notion of generating functions.
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Definition 3.1.6. The generating function for a sequences {an}n≥0 is defined to be the formal
power series

a0 + a1x+ a2x
2 + · · · .

So, the generating function for {an}n≥0 is nothing but a way of recording the sequence. One
of the benefits of generating functions is that we can use many properties of formal power series.

Example 3.1.7. The generating function for {an = 2n}n≥0 is∑
n≥0

2nxn =
∑
n≥0

(2x)n =
1

1− 2x
. (3.1.3)

Example 3.1.8. Let’s find the generating function for {an = n2n}n≥0. Differentiating both sides
of (3.1.3), we get ∑

n≥0

n2nxn−1 =
2

(1− 2x)2
.

Multiplying both sides by x, we obtain∑
n≥0

n2nxn =
2x

(1− 2x)2
.

We can easily extend the definition of generating functions to accommodate arrays {aI}I∈Z

of elements aI ∈ R using multivariate formal power series. More generally, we will consider
generating functions for arbitrary (combinatorial) objects.

Definition 3.1.9. Let A be a set of objects. A weight on A is a function wt : A → R, where
R is any commutative ring. The generating function for A with respect to the weight function
wt is the formal power series ∑

a∈A

wt(a).

Example 3.1.10. Let A = {0, 1, 2, . . . } and define a weight of A by wt(a) = xa. Then the
generating function for A (with this weight) is

∑
a∈A

wt(a) =
n∑

n=0

wt(n) =
n∑

n=0

xn =
1

1− x
.

Example 3.1.11. Let A be the set of subsets of [n] and define a weight of A by wt(a) = x|a|yn−|a|.
Then the generating function for A (with this weight) is

∑
a∈A

wt(a) =
∑
a⊆[n]

x|a|yn−|a| =

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n.

Example 3.1.12. Let A be the set Sn of permutations of [n] and define a weight of A by
wt(a) = xcycle(a). Then it can be proved (see (3.4.4)) that the generating function for A (with this
weight) is ∑

a∈A

wt(a) =
∑
π∈Sn

xcycle(a) = x(x+ 1) · · · (x+ n− 1).

We will often use the term “generating function” in a flexible manner. For example, the
generating function for the number of permutations would mean the generating function for the
sequence {an = n!}n≥0, that is,

∑
n≥0 n!x

n.
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Figure 3.1: A Dyck path from (0, 0) to (10, 2).

1 x x2 x2

x3 x3 x3 x3 x3

...

Figure 3.2: An illustration of the generating function for Dyck paths.

3.2 Dyck paths and Motzkin paths

In this section we introduce two important classes of lattice paths. These are fundamental objects
in studying orthogonal polynomials combinatorially.

Definition 3.2.1. A lattice path from u to v is a sequence π = (v0, v1, . . . , vn) of points in Z×Z
with v0 = u and vn = v. Each pair (vi, vi+1) of consequence points is called a step of π.

A path π = (v0, v1, . . . , vn) is also considerd as a sequence S1 · · ·Sn of steps, where Si =
(vi−1, vi). We will sometimes identify a step (vi, vi+1) with vi+1 − vi ∈ Z× Z.

Definition 3.2.2. A Dyck path is a lattice path consisting of up steps (1, 1) and down steps
(1,−1) that stays on or above the x-axis, see Figure 3.1. Denote by Dyck(u→ v) the set of Dyck
paths from u to v. We also define Dyck2n = Dyck((0, 0) → (2n, 0)).

Let’s enumerate the Dyck paths in Dyck2n using generating functions. To do this let

C(x) =
∑
n≥0

|Dyck2n |xn.

Then we can also write
C(x) =

∑
π∈Dyck

wt(π),

where Dyck is the set of all Dyck paths from (0, 0) to (2n, 0) for some n ≥ 0 and wt(π) = xd(π),
where d(π) is the number of down steps in π. It is helpful to imagine the generating function C(x)
as a picture of all Dyck paths, where each Dyck path has its weight attached to it as shown in
Figure 3.2.

A Dyck path π ∈ Dyck can be considered as a sequence of up steps and down steps. For
example, the Dyck path in Figure 3.3 is π = UUDUUDDDUDUD. Every nonempty Dyck path
π ∈ Dyck is uniquely decomposed into π = UτDρ for some τ, ρ ∈ Dyck. For our running example,

π = UUDUUDDDUDUD = U(UDUUDDD)(UDUD), (3.2.1)
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Figure 3.3: A Dyck path π from (0, 0) to (12, 0).

so we have τ = UDUUDDD and ρ = UDUD. This argument shows that

C(x) = 1 + C(x)xC(x). (3.2.2)

Solving this quadratic equation for C(x), we get

C(x) =
1±

√
1− 4x

2x
. (3.2.3)

We must choose the correct sign here. First, by setting x = 0, we obtain that the constant
term of

√
1− 4x is 1. Thus (3.2.3) is a valid formal power series only for the minus sign. This

implies that ∑
n≥0

|Dyck2n |xn =
1−

√
1− 4x

2x
.

Now we can use the binomial theorem

(1 + x)α :=
∑
n≥0

(
α

n

)
xn,

where (
α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
.

By the binomial theorem, we have

√
1− 4x = (1− 4x)1/2 =

∑
n≥0

(
1/2

n

)
(−4x)n = 1 +

∑
n≥1

1
2
−1
2

−3
2 · · · −2n+3

2

n!
(−1)n4nxn

= 1−
∑
n≥1

1 · 3 · · · · · (2n− 3)

n!
2nxn = 1−

∑
n≥1

2(2n− 2)!

n!(n− 1)!
xn.

Therefore,

∑
n≥0

|Dyck2n |xn =
1−

√
1− 4x

2x
=
∑
n≥1

1

n

(
2n− 2

n− 1

)
xn−1 =

∑
n≥0

1

n+ 1

(
2n

n

)
xn.

Comparing the coefficient of xn in both sides we obtain the following result.

Proposition 3.2.3. We have

|Dyck2n | =
1

n+ 1

(
2n

n

)
. (3.2.4)
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Figure 3.4: A Motzkin path from (0, 0) to (10, 1).

Note that we proved (3.2.4) using generating functions, but this can also be proved by a
standard reflection principle.

The Catalan number Cn is defined by

Cn =
1

n+ 1

(
2n

n

)
.

The first few Catalan numbers are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . .

There are many combinatorial objects counted by the Catalan number. Stanley [8] collected
more than 200 such “Catalan objects”. Dyck paths are one of the most well-known Catalan
objects. Some of other well known Catalan objects are triangulations of an (n + 2)-gon, ballot
sequences of length 2n, and plane binary trees with n vertices.

The Catalan numbers satisfy the following recurrence:

C0 = 1, Cn =

n∑
k=0

CkCn−1−k, n ≥ 1. (3.2.5)

This recurrence can be proved similarly as (3.2.2) using the decomposition (3.2.1).
Now we consider lattice paths with three kinds of steps. These lattice paths will play a

fundamental role in Viennot’s theory of orthogonal polynomials.

Definition 3.2.4. A Motzkin path is a lattice path consisting of up steps (1, 1), horizontal
steps (1, 0), and down steps (1,−1) that stays on or above the x-axis, see Figure 3.4. Denote
by Motz(u→ v) the set of Dyck paths from u to v. We also define Motzn = Motz((0, 0) → (n, 0)).

Considering the positions of horizontal steps, we can relate the number of Motzkin paths and
that of Dyck paths.

Proposition 3.2.5. We have

|Motzn | =
⌊n/2⌋∑
k=0

(
n

2k

)
Ck.

Proposition 3.2.6. Let M(x) =
∑

n≥0 |Motzn |xn. Then

M(x) =
1− x−

√
1− 2x− 3x2

2x2
.

Proof. By a similar argument used to prove (3.2.2), we have

M(x) = 1 + xM(x) +M(x)x2M(x).

Solving the equation we obtain the desired formula.
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1 4 5 72 3 86 9

Figure 3.5: A visualization of a set partition {{1, 4, 5, 7}, {2, 3, 8}, {6}, {9}} of [9].

3.3 Set partitions and matchings

In this section we study set partitions and matchings. They will be used to give combinatorial
interpretations for moments of Charlier polynomials and Hermite polynomials.

Definition 3.3.1. A set partition of a set X is a collection π = {B1, . . . , Bk} of subsets of X
such that

(1) Bi ̸= ∅ for all i,

(2) Bi ∩Bj = ∅ for all i ̸= j, and

(3) B1 ∪ · · · ∪Bk = X.

Each Bi is called a block of π.

A set partition can be visualized by connecting consecutive elements in each block see Fig-
ure 3.5.

We denote by Πn the set of all set partitions of [n]. We also define Πn,k to be the set of all set
partitions of [n] with exactly k blocks. The Stirling number of the second kind S(n, k) is the
cardinality of Πn,k.

We use the convention that ∅ is the only set partition of ∅, i.e., Π0 = {∅}. The following are
immediate from the definition of set partitions:

• S(n, 0) = δn,0,

• S(n, n) = 1,

• S(n, k) = 0 if k > n.

We can compute the number S(n, k) using the following recursion with the above initial con-
ditions.

Proposition 3.3.2. For integers n, k ≥ 1, we have

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k).

Proof. Let π ∈ Πn,k. If n is in a singleton of π, then π \ {n} ∈ Πn−1,k−1. Otherwise, π can be
obtained from a set partition π′ ∈ Πn−1,k by adding n to one of the k blocks of π′. This shows
the recursion.

Proposition 3.3.3. We have

S(n, k) =
1

k!

k∑
i=0

(−1)k−i

(
k

i

)
in.
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Proof. The number of onto functions f : [n] → [k] is k!S(n, k). By the principle of inclusion and
exclusion, this number is equal to

k!S(n, k) =

k∑
i=0

(−1)k−i

(
k

i

)
in,

which implies the desired formula.

For an integer n ≥ 0, a falling factorial (x)n is defined by

(x)n = x(x− 1) · · · (x− n+ 1).

Proposition 3.3.4. We have
n∑

k=0

S(n, k)(x)k = xn. (3.3.1)

Proof. Since both sides are polynomials in x, it suffices to show that the identity holds for all
positive integers x. So, let’s assume that x is a positive integer. Then the right-hand side is the
number of all functions f : [n] → [x].

Now, consider a function f : [n] → [x] such that the image f([n]) has exactly k elements.
Let f([n]) = {a1 < · · · < ak}. Then {f−1(a1), . . . , f

−1(ak)} is a set partition of [n] with k
blocks. Thus such a function f is obtained by first partitionining [n] into k blocks B1, . . . , Bk

and constructing a one-to-one map from {B1, . . . , Bk} to [x]. This shows that the number of such
functions is S(n, k)(x)k. Summing over all k gives the number of all functions f : [n] → [x].

Since both sides of the identity count the same number, they are equal.

Definition 3.3.5. A matching on a set X is a set partition π = {B1, . . . , Bk} of X in which
every block has size 1 or 2. Each block of size 1 is called a fixed point and each block of size 2
is called an edge or an arc of π.

A matching is said to be perfect or complete if there are no fixed points.

Proposition 3.3.6. The number of complete matchings of [2n] is

(2n− 1)!! := 1 · 3 · · · · · (2n− 1).

The number of matchings of [n] is

⌊n/2⌋∑
k=0

(
n

2k

)
(2k − 1)!!.

Proof. The first identity can easily be proved by induction on n since there are 2n − 1 ways to
form an edge with the last element 2n and another element.

The second identity follows from the observation that if a matching of [n] has k edges, then
these edges form a complete matching on a set of size 2k.

3.4 Permutations

In this section we study permutations, which are one of the most fundamental objects in combina-
torics. We will see later a connection between permutations and moments of Laguerre polynomials.

Definition 3.4.1. A permutation on [n] is a bijection π : [n] → [n]. The symmetric group
Sn is the group of permutations on [n] with multiplication given by composition of functions.
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For π, τ ∈ Sn, we write πτ = π ◦ τ , that is πτ is the permutation defined by (πτ)(i) = π(τ(i)).
Let π : [n] → [n] be a permutation. We will often write πi = π(i) and identify this permutation

with a word
π = π1π2 · · ·πn,

which is called the one-line notation of π. The two-line notation of π is the array

π =

(
1 2 · · · n
π1 π2 · · · πn

)
.

Example 3.4.2. Let π ∈ S3 be the permutation given by

π(1) = 2, π(2) = 3, π(3) = 1.

Then in one-line notation,
π = π1π2π3 = 231

and in two-line notation,

π =

(
1 2 3
2 3 1

)
.

We have

π2 =

(
1 2 3
3 1 2

)
, π3 =

(
1 2 3
1 2 3

)
.

A cycle of π is a sequence (a1, . . . , ak) of distinct elements of [n] such that

π(a1) = a2, π(a2) = a3, . . . , π(ak) = a1.

We denote by cycle(π) the number of cycles in π.
A cycle (a1, . . . , ak) is considered to be the same as any of its cyclic shift (aj , . . . , ak, a1, . . . , aj−1).

We also consider a cycle ρ = (a1, . . . , ak) as a permutation of [n] such that

ρ(i) =

{
i if i ̸∈ {a1, . . . , ak},
aj+1 if i = aj ,

where ak+1 = a1.
A cycle of length k is a permutation (in some Sn) of the form (a1, . . . , ak). A transposition

is a cycle of length 2. A simple transposition is a transposition of the form (i, i+ 1).
Note that for a permutation π = π1 · · ·πn ∈ Sn and a transposition τ = (i, j) ∈ Sn with i < j,

the product πτ is the permutation obtained from π by interchaning the values πi and πj at the
positions i and j:

πτ = π1 · · ·πi−1πjπi+1 · · ·πj−1πiπj+1 · · ·πn.
On the other hand, the product τπ is the permutation obtained from π by interchaning the values
i and j. For example, if π = · · · i · · · j · · ·, then τπ = · · · j · · · i · · ·.

Proposition 3.4.3. Let π ∈ Sn. Then we can write π = ρ1 · · · ρk for some disjoint cycles
ρ1, . . . , ρk in Sn. Moreover, we can also write π = s1 · · · sr for some (not necessarily disjoint)
simple transpositions si ∈ Sn.

Proof. Let π ∈ Sn. Let m = 1 and consider the sequence π(m), π2(m), . . .. Since this is an infinite
sequence of integers in [n], we must have πi(m) = πj(m) for some i < j. By multiplying π−i, we
have m = πj−i(m). Thus we can find the smallest integer r such that πr(m) = m. Let ρ1 be the
cycle (k, π(k), π2(k), . . . , πr−1(k)).

Now let m be the smallest integer in [n] except those in ρ1. We repeat this process and obtain
cycles ρ1, . . . , ρk whose union as a set is [n]. These cycles are disjoint because if ρi and ρj have a
common element then they must be the same cycle.

For the second statement, let π = π1 · · ·πn. Note that multiplying a simple transposition
(i, i + 1) on the left of π interchanges πi and πi+1. Thus we can sort π = π1 · · ·πn into the
the identity permutation 12 · · ·n by multiplying simple transpositions t1, . . . , tr on the left, i.e.,
πt1 · · · tr = id. Then π = tr · · · t1, which is a product of simple transpositions.
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Figure 3.6: A visualization of a permutation π = (1, 9, 3)(2, 5)(4, 8)(6)(7) ∈ S9.

By Proposition 3.4.3, we can write π in cycle notation, i.e., as a product of its disjoint cycles:

π = ρ1 · · · ρr.

Example 3.4.4. Let π = 951826743 ∈ S9. In two-line notation,

π =

(
1 2 3 4 5 6 7 8 9
9 5 1 8 2 6 7 4 3

)
.

There are 5 disjoint cycles of π, namely, (1, 9, 3), (2, 5), (4, 8), (6), and (7). Thus, in cycle notation,

π = (1, 9, 3)(2, 5)(4, 8)(6)(7).

Thus, cycle(π) = 5. We sometime omit the cycles of length 1 and write

π = (1, 9, 3)(2, 5)(4, 8).

We can also visualize a permutation by drawing its cycles as shown in Figure 3.6.

Definition 3.4.5. A permutation π ∈ Sn is called an involution if π2 = ι, where ι is the identity
permutation on [n]. Let In denote the set of involutions in Sn.

Proposition 3.4.6. There is a bijection between In and the set of matchings on [n].

Proof. A permutation π ∈ Sn is an involution if and only if every cycle is of length 1 or 2. Thus,
if π is an involution, changing each cycle of π into a block gives a matching on [n]. This is clearly
a bijection.

Definition 3.4.7. An inversion of a permutation π ∈ Sn is a pair (i, j) of integers 1 ≤ i < j ≤ n
such that π(i) > π(j). We denote by inv(π) the number of inversions of π.

In other words, inv(π) is the pair of integers such that their relative positions are out of orders
in π.

Proposition 3.4.8. We have∑
π∈Sn

qinv(π) = (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1).

Proof. We leave this as an exercise.

Definition 3.4.9. The sign of a permutation π ∈ Sn is defined to be

sgn(π) = (−1)inv(π).

The notion of the sign of a permutation is very important when we study determinants. We
will see several ways to compute the sign of a permutation. To this end we need some lemmas.
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Figure 3.7: A cycle ρ with i and j on the left and the permutation ρτ on the right, where τ = (i, j).

Lemma 3.4.10. Let π ∈ Sn and let τ = (i, j) ∈ Sn. Then

cycle(τπ) = cycle(πτ) =

{
cycle(π)− 1 if i and j are in different cycles of π,

cycle(π) + 1 if i and j are in the same cycle of π.

Proof. Suppose that i and j are in the same cycle, say ρ, of π. Then ρτ becomes two cycles as
shown in Figure 3.7. Thus in this case cycle(πτ) = cycle(π) + 1. The other cases can be proved
similarly.

Lemma 3.4.11. Let π ∈ Sn and let τ = (i, i+ 1) ∈ Sn. Then

sgn(πτ) = − sgn(π).

Proof. Since

πτ =

(
· · · i i+ 1 · · ·
· · · πi+1 πi · · ·

)
,

we have inv(πτ) = inv(π)± 1. This implies sgn(πτ) = − sgn(π).

Lemma 3.4.12. If π ∈ Sn is a product of k simple transpositions, then

sgn(π) = (−1)k.

Proof. Let π = t1 · · · tk, where ti’s are simple transpositions. Then by Lemma 3.4.12,

sgn(π) = sgn(ιt1 · · · tk) = (−1)k sgn(ι) = (−1)k.

Proposition 3.4.13. For two permutations π, σ ∈ Sn, we have

sgn(πσ) = sgn(π) sgn(σ).

Proof. Suppose π = t1 · · · tk and σ = s1 · · · sr, where ti’s and sr’s are simple transpositions. Then
since sgn(π) = (−1)k sgn(σ) = (−1)r, we have

sgn(πσ) = sgn(t1 · · · tks1 · · · sr) = (−1)k+r = sgn(π) sgn(σ).

Proposition 3.4.14. For π ∈ Sn, we have

sgn(π) = (−1)inv(π) = (−1)n−cycle(π) = (−1)evencycle(π),

where evencycle(π) is the number of even cycles in π. In particular, if π = t1 · · · tk, where ti’s are
transpositions, then sgn(π) = (−1)t.
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Proof. Let π = t1 · · · tk, where ti’s are simple transpositions. By the definition of sgn(π) and
Lemma 3.4.12, we have sgn(π) = (−1)inv(π) = (−1)k. On the other hand, since π = t1 · · · tkι, by
Lemma 3.4.10, (−1)cycle(π) = (−1)cycle(ι)+k = (−1)n+k. Thus sgn(π) = (−1)k = (−1)n−cycle(π).

Now let ci be the number of cycles of length i in π. Then

(−1)n−cycle(π) = (−1)(1·c1+2·c2+···+n·cn)−(c1+···+cn) = (−1)0·c1+1·c2+···+(n−1)·cn = (−1)n−cycle(π).

The last statement follows from

sgn(π) = sgn(t1 · · · tk) = sgn(t1) · · · sgn(tk) = (−1)k,

because the sign of a transposition τ is sgn(τ) = (−1)evencycle(τ) = (−1)1 = −1.

The signless Stirling number of the first kind c(n, k) is defined to be the number of
permutations on [n] with k cycles. The Stirling number of the first kind s(n, k) is defined to
by s(n, k) = (−1)n−kc(n, k). Note that (−1)n−k is the sign of a permutation on [n] with k cycles.

Proposition 3.4.15. For integers n, k ≥ 1, we have

c(n, k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k). (3.4.1)

Proof. A permutation π ∈ Sn can be obtained from a permutation π′ ∈ Sn−1 by creating a new
cycle (n) of length 1 or by inserting n after any integer in a cycle of π′. For example, for π′ =
(1, 9, 3)(2, 5)(4, 8)(6)(7) ∈ S9, if we insert 10 after 2, we get π = (1, 9, 3)(2, 10, 5)(4, 8)(6)(7) ∈ S10,
if we insert 10 after 6, we get π = (1, 9, 3)(2, 5)(4, 8)(6, 10)(7) ∈ S10, and if we create a new cycle
with 10, we get π = (1, 9, 3)(2, 5)(4, 8)(6)(7)(10) ∈ S10. This shows the recursion.

Proposition 3.4.16. We have
n∑

k=0

s(n, k)xk = (x)n. (3.4.2)

Equivalently,
n∑

k=0

c(n, k)xk = x(x+ 1) · · · (x+ n− 1). (3.4.3)

Proof. The equivalence of (3.4.2) and (3.4.3) is obtained by replacing x by −x and multiplying
(−1)n both sides. Thus it suffices to show (3.4.3). This can be proved by induction using (3.4.1).

Note that (3.4.3) can be rewritten as∑
π∈Sn

xcycle(π) = x(x+ 1) · · · (x+ n− 1). (3.4.4)

We can prove this bijectively.

A bijective proof of (3.4.4). We will construct an algorithm to construct a permutation π ∈ Sn.
For k = 1, . . . , n, we do the following.

Step 1 For k = 1, create a new cycle consisting of 1.

Step 2 Let 2 ≤ k ≤ n and suppose that the integers 1, . . . , k − 1 form a permutation on [k − 1]
in cycle notation. Then we either create a new cycle consisting of k or insert k after one of
the integers 1, . . . , k − 1.
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For each 1 ≤ k ≤ n, there are k choices: creating a new cycle (in one way) or inserting k into
one of the existing cycles (in k − 1 ways). The possible choices for k are exactly the same as the
choices for the kth factor when we expand

x(x+ 1)(x+ 1 + 1) · · · (x+

n−1︷ ︸︸ ︷
1 + 1 + · · ·+ 1). (3.4.5)

Moreover, the first choice (creating a new cycle) corresponds to multipying x. Thus, if π is a
permutation obtained in this algoritm, then the same process in the exansion of (3.4.5) gives
xcycle(π). This means that the both sides of(3.4.4) match term-by-term, completing the proof of
this identity.

Using (3.3.1) and (3.4.2) we obtain the following matrix identity, which is a duality between
Stirling numbers of the first and second kinds.

Proposition 3.4.17. We have(
S(n, k)

)
n,k≥0

(
s(n, k)

)
n,k≥0

= I, (3.4.6)

where I = (δn,k)n,k≥0 is the infinite identity matrix. Equivalently, for integers n,m ≥ 0,∑
k≥0

S(n, k)s(k,m) = δn,m, (3.4.7)

∑
k≥0

s(n, k)S(k,m) = δn,m. (3.4.8)

Proof. By (3.3.1) and (3.4.2), we have the change of basis identities between two bases {xn}n≥0

and {(x)n}n≥0 of the vector space of polynomials:(
S(n, k)

)
n,k≥0

(
(x)n

)
n≥0

=
(
xn
)
n≥0

,(
s(n, k)

)
n,k≥0

(
xn
)
n≥0

=
(
(x)n

)
n≥0

.

Thus the two matrices (S(n, k))n,k≥0 and (s(n, k))n,k≥0 are inverse of each other, proving (3.4.6).



Chapter 4

Combinatorial models for OPS

From now one we will focus on the combinatorial approaches to orthogonal polynomials in Vien-
not’s lecture notes [9]. A part of this chapter has some overlaps with Chapter 2.

The main goal of this chapter to give combinatorial interpretations for orthogonal polynomials
and their moments. Using these combinatorial interpretations, we will reprove the orthogonality
of orthogonal polynomials using combinatorics only.

4.1 Orthogonal polynomials and 3-term recurrences

In this section we recall basic definitions and properties of orthogonal polynomials. We then state
the 3-term recurrence of orthogonal polynomials and Favard’s theorem.

LetK be a field (we can also use a commutative ring for any result without using divisions). We
denote by K[x] the ring of polynomials in x with coefficients in K. A linear functional is a linear
transformation L : K[x] → K, i.e., a function satisfying L(af(x) + bg(x)) = aL(f(x)) + bL(g(x))
for all f(x), g(x) ∈ K[x] and a, b ∈ K. The nth moment of L is defined to be µn = L(xn).

Definition 4.1.1. Let L be a linear functional defined on the space of polynomials in x. A
sequence of polynomials {Pn(x)}n≥0 is called an orthogonal polynomial sequence (OPS)
with respect to L if the following conditions hold:

(1) degPn(x) = n, n ≥ 0,

(2) L(Pm(x)Pn(x)) = 0 for m ̸= n,

(3) L(Pm(x)2) ̸= 0 for m ≥ 0.

We also say that {Pn(x)}n≥0 is orthogonal for the moments {µn}n≥0.

Orthogonal polynomials in the above definition are called “formal” or “general” orthogonal
polynomials because the field K can be anything. For instance, it may contain arbitrary formal
variables such as a, b, c, d. Then the polynomials Pn(x) and the moments µn can be treated as
polynomials (or more complicated objects such as formal power series or rational functions) in
these formal variables.

Proposition 4.1.2. Suppose that {Pn(x)}n≥0 is an OPS for L.

(1) {Pn(x)}n≥0 is also orthogonal with respect to L′ for any L′ = aL for a ̸= 0.

(2) L is uniquely determined up to nonzero scalar multiplication.

(3) If we set L(1) = 1, then L is uniquely determined.

(4) {anPn(x)}n≥0 is an OPS with respect to L for any sequence {an}n≥0 with an ̸= 0.

30
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0 1 2 3 4 5 6 7

−λ1 x −b3 −b4 x x −b7

Figure 4.1: A Favard tiling T ∈ FT8 with wt(T ) = λ1b3b4b7x
3.

Proof. All statements are easy to check. For example, (2) can be seen by noticing that once the
0th moment µ0 = L(1) is determined, then the nth moment µn, for n ≥ 1, is uniquely determined
by the condition L(Pn(x)) = 0.

By the above proposition we may assume that L(1) = 1. From now on we will always
assume that degPn(x) = n and L(1) = 1 unless otherwise stated.

Recall from Theorem 2.4.1 that every OPS satisfies a 3-term recurrence.

Theorem 4.1.3 (3-term recurrence). Let L be a linear functional with monic OPS {Pn(x)}n≥0.
Then there are sequences {bn}n≥0 and {λn}n≥1 such that λn ̸= 0 and

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 0,

where P−1(x) = 0 and P0(x) = 1.

The inverse of the above theorem is also true, which is one of the most important results in
the theory of classical orthogonal polynomials.

Theorem 4.1.4 (Favard’s theorem). Let {Pn(x)}n≥0 be a sequence of polynomials satisfying
P−1(x) = 0, P0(x) = 1, and

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 0, (4.1.1)

for some sequences {bn}n≥0 and {λn}n≥1 with λn ̸= 0. Then {Pn(x)}n≥0 is an OPS for some
linear functional L.

The main goal of this chapter is to give combinatorial interpretations for the orthogonal poly-
nomials Pn(x) and their moments µn. Using these combinatorial interpretations we will prove
Favard’s theorem bijectively.

4.2 A model for orthogonal polynomials using Favard tilings

In this section we give a combinatorial interpretation for orthogonal polynomials using Favard
tilings.

Definition 4.2.1. A Favard tiling of size n is a tiling of a 1×n square board with three types
of tiles: red monominos, black monominos, and black dominos. The set of Favard tilings of size n
is denoted by FTn.

We label the squares in the 1× n board by 0, 1, . . . , n− 1 from left to right. Define the weight
wt(T ) of T ∈ FTn to be the product of the weights of the tiles in T , where

(1) the weight of each red monomino is x,

(2) the weight of each black monomino containing a label i is −bi, and

(3) the weight of each domino containing labels i− 1 and i is −λi.

For example, see Figure 4.1. Note that the number un of Favard tilings of size n satisfies
un+1 = 2un + un−1 with u0 = 1 and u1 = 2. These numbers are called the Pell numbers.

The following proposition gives a combinatorial interpretation for orthogonal polynomials.
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Proposition 4.2.2. Suppose that {Pn(x)}n≥0 is a sequence of polynomials satisfying (4.1.1).
Then

Pn(x) =
∑

T∈FTn

wt(T ).

Proof. This is immediate from the recurrence (4.1.1).

4.3 How to find a combinatorial model for moments

Moments are important quantities of a linear functional L because they have all the information
of L. In this section we will find a combinatorial interpretation for the moments of orthogonal
polynomials. To do this we will first take a close look at the moments.

Suppose that L is a linear functional with monic OPS {Pn(x)}n≥0, which satisfies the 3-term
recurrence (4.1.1). Let’s assume L(1) = 1. Then, using the orthogonality, we have

L(Pn(x)) = δn,0. (4.3.1)

This relation in fact completely determines the moments µn. For example, since

P0(x) = 1,

P1(x) = (x− b0)P0(x)− λ0P−1(x) = x− b0,

P2(x) = (x− b1)P1(x)− λ1P0(x) = x2 − (b1 + b0)x+ b0b1 − λ1,

we have

µ0 = L(1) = 1,

µ1 = L(x) = L(P1(x) + b0) = b0,

µ2 = L(x2) = L(P2(x) + (b0 + b1)x− b0b1 + λ1) = (b0 + b1)b0 − b0b1 + λ1 = b20 + λ1.

In this way, we can compute a few more moments:

µ3 = b30 + 2b0λ1 + b1λ1,

µ4 = b40 + 3b20λ1 + 2b0b1λ1 + b21λ1 + λ21 + λ1λ2,

µ5 = b50 + 4b30λ1 + 3b20b1λ1 + 2b0b
2
1λ1 + b31λ1 + 3b0λ

2
1 + 2b1λ

2
1 + 2b0λ1λ2 + 2b1λ1λ2 + b2λ1λ2.

The above experiments clearly suggest that µn would be a polynomial in bi’s and λi’s with
nonnegative integer coefficients. How can we prove such a conjecture? A satisfying answer to this
question is to find combinatorial objects whose generating function is µn. That is to find a set X
of combinatorial objects and a weight wt(A) of each element A ∈ X such that

µn =
∑
A∈X

wt(A),

and wt(A) is a polynomial (preferably a monomial) in bi’s and λi’s with nonnegative integer
coefficients.

But how can we find such combinatorial objects? Suppose that such combinatorial objects
exist with monomial weight wt(A) for each A ∈ X. Then if we set bi = λi = 1 for all i then µn

would be the number of elements in X. If we compute µn with this substitution for n = 0, 1, 2, . . .,
then we obtain the following sequence:

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, . . . .

There is a very useful webpage https://oeis.org/ where you can search integer sequences. If
you search the above sequence, the webpage will tell you that this is the sequence of the number

https://oeis.org/
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Figure 4.2: A Motzkin path π from (0, 0) to (12, 0) with wt(π) = b0b2λ
2
1λ

2
2λ3.

of Motzkin paths. So we can guess that there must be a close connection with the moments of
orthogonal polynomials and Motzkin paths.

After spending enough time of trials and errors, we can come up with the following combina-
torial model for the moments of orthogonal polynomials.

Recall that Motz(u→ v) is the set of Motzkin paths from u to v. We define the weight wt(π)
of a Motzkin path π to be the product of the weights of the steps in π, where

(1) the weight of an up step is 1,

(2) the weight of a horizontal step starting at height i is bi, and

(3) the weight of a down step starting at height i is λi.

See Figure 4.2.
We are now ready state Viennot’s combinatorial interpretation for moments of orthogonal

polynomials.

Theorem 4.3.1. Suppose that {Pn(x)}n≥0 is a monic OPS for a linear functional L with L(1) =
1. Suppose that {Pn(x)}n≥0 satisfy the 3-term recurrence

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 0.

Then the moments µn = L(xn) are given by

µn =
∑

π∈Motzn

wt(π).

More generally, we will prove a combinatorial interpretation for mixed moments.

Definition 4.3.2. Let {Pn(x)}n≥0 be a monic OPS for a linear functional L. For integers n, r, s ≥
0, the mixed moments µn,r,s and µn,k of this OPS are defined by

µn,r,s =
L(xnPr(x)Ps(x))

L(Ps(x)2)
,

µn,k = µn,0,k =
L(xnPk(x))

L(Pk(x)2)
.

Note that µn = µn,0,0.
Let Motzn,r,s denote the set of Motzkin paths from (0, r) to (n, s).

Theorem 4.3.3. Following the notation in Theorem 4.3.1, we have

µn,r,s =
∑

π∈Motzn,r,s

wt(π).

Proof. We proceed by induction on n. Suppose n = 0. By the orthogonality of {Pn(x)}n≥0, we
have

µ0,r,s =
L(Pr(x)Ps(x))

L(Ps(x)2)
= δr,s.
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Since Motz0,r,s = ∅ if r = s and Motz0,r,s has only one (empty) Motzkin path if r = s, we also
have

∑
π∈Motzn,r,s

wt(π) = δr,s.
Let n ≥ 1 and suppose that the theorem holds for n− 1. Then by the 3-term recurrence,

xPr(x) = Pr+1(x) + brPr(x) + λrPr−1(x).

Thus

µn,r,s =
L(xnPr(x)Ps(x))

L(Ps(x)2)
=

L(xn−1(xPr(x))Ps(x))

L(Ps(x)2)

=
L(xn−1(Pr+1(x) + brPr(x) + λrPr−1(x))Ps(x))

L(Ps(x)2)

=
L(xn−1Pr+1(x)Ps(x))

L(Ps(x)2)
+ br

L(xn−1Pr(x)Ps(x))

L(Ps(x)2)
+ λr

L(xn−1Pr−1(x)Ps(x))

L(Ps(x)2)

= µn−1,r+1,s + brµn−1,r,s + λrµn−1,r−1,s

=
∑

π∈Motzn−1,r+1,s

wt(π) + br
∑

π∈Motzn−1,r,s

wt(π) + λr
∑

π∈Motzn−1,r−1,s

wt(π)

=
∑

π∈Motzn,r,s

wt(π),

where the second to last equation follows from the induction hypothesis and the last equation
follows from considering the first step of each π ∈ Motzn,r,s. Hence the theorem holds for n and
we are done by induction.

Corollary 4.3.4. Following the notation in Theorem 4.3.1, we have

L(Pn(x)
2) = λ1 · · ·λn.

Proof. Since Pn(x) is monic, we can write Pn(x) = xn+Q(x) for some polynomial Q(x) of degree
less than n. Thus by Theorem 4.3.3,

L(Pn(x)
2) = L((xn +Q(x))Pn(x)) = L(xnPn(x)) =

∑
π∈Motzn,n,0

wt(π) = λ1 · · ·λn,

as desired. Here, the last equality follows from the fact that there is only one Motzkin path in
Motzn,n,0, namely, the path from (0, n) to (n, 0) consisting of n down steps.

4.4 A bijective proof of Favard’s theorem

We have a combinatorial interpretation for both orthogonal polynomials and their moments. In
this section we will prove Favard’s theorem bijectively using these combinatorial models.

Suppose that {Pn(x)}n≥0 is a sequence of polynomials satisfying the 3-term recurrence

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x).

To prove Favard’s theorem, we need to find a linear functional L for which {Pn(x)}n≥0 are or-
thogonal. We simply define L so that the moments are given by

L(xn) =
∑

π∈Motzn

wt(π). (4.4.1)

It is enough to show that
L(Pr(x)Ps(x)) = λ1 · · ·λsδr,s.
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More generally, we will prove

L(xnPr(x)Ps(x)) = λ1 · · ·λs
∑

π∈Motzn,r,s

wt(π). (4.4.2)

We first need to give a combinatorial meaning to the the left-hand side of (4.4.2). For a
Favard tiling T with k red monominos, let wt′(T ) = wt(T )/xk. In other words, wt′(T ) is the
same as wt(T ) except we only consider the weights of black monominos and black dominos. Then
Proposition 4.2.2 can be restated as

Pn(x) =
∑

T∈FTn

wt′(T ) · x(number of red monominos in T ).

Thus, by the definition of L(xn) in (4.4.1), we have

L(xnPr(x)Ps(x)) =
∑

(T1,T2,π)∈X

wt′(T1) wt
′(T2) wt(π),

where X is the set of triples (T1, T2, π) such that for some 0 ≤ i ≤ r and 0 ≤ j ≤ s,

(1) T1 ∈ FTr has i red monominos,

(2) T2 ∈ FTs has j red monominos, and

(3) π ∈ Motzn+i+j .

Let Y be the set of π ∈ Motzn+r+s such that the first r steps are up steps and the last s step
s are down steps. Then the right-hand side of (4.4.2) is equal to

∑
π∈Y wt(π). Therefore (4.4.2)

is equivalent to the following theorem.

Theorem 4.4.1. For the sets X and Y defined above, we have∑
(T1,T2,π)∈X

wt′(T1) wt
′(T2) wt(π) =

∑
π∈Y

wt(π). (4.4.3)

Proof. We will find a sign-reversing weight-preserving involution onX with fixed point set {(∅, ∅, π) :
π ∈ Y }. Consider (T1, T2, π) ∈ X. We write π = S1S2 · · ·Sm as a sequence of steps. Let a, b, u, v
be the integers defined as follows:

• a is the largest integer such that T1 starts with a red monominos,

• b is the largest integer such that T2 starts with b red monominos,

• u is the largest integer such that π starts with u up steps,

• v is the largest integer such that π ends with v down steps.

We now define ϕ(T1, T2, π) = (T ′
1, T

′
2, π

′) in the following way. Here, a′, b′, u′, v′ are the integers
defined similarly as above using T ′

1, T
′
2, and π

′.

Case 1 u < a. In this case we set T ′
2 = T2. There are two subcases.

Case 1-1 Su+1 is a horizontal step. Let

π′ = S1 · · · Ŝu+1 · · ·Sm,

and define T ′
1 to be the Favard tiling obtained from T1 by replacing the (u + 1)st red

monomino (at position u) by a black monomino. Here the notation Ŝu+1 means that
Su+1 is removed from the sequence. See Figure 4.3. Observe that since wt′(T ′

1) =
−bu wt′(T1) and wt′(π′) = wt′(π)/bu, we have

wt′(T ′
1) wt

′(T ′
2) wt(π

′) = −wt′(T1) wt
′(T2) wt(π).

Moreover, we always have u′ ≥ u and a′ = u < a ≤ r, hence u′ ≥ a′ ̸= r.
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u = 2

π =

v = 0

b2

0 1 2 3

−b3

a = 3

T1 = 0 1

b = 2

T2 =

u′ = 2

π′ =

v′ = 0

0 1 2 3

a′ = 2

T ′
1 =

−b2−b3
0 1

b′ = 2

T ′
2 =

Figure 4.3: A triple (π, T1, T2) ∈ X in Case 1-1 on the left and the corresponding triple
(π′, T ′

1, T
′
2) ∈ X in Case 2-1 on the right, where r = 4, s = 2, and n = 5. The horizontal

step (2, 2) → (3, 3) in π is collapsed to a point.

Case 1-2 Su+1 is a down step. Let

π′ = S1 · · · ŜuŜu+1 · · ·Sm,

and define T ′
1 to be the Favard tiling obtained from T1 by replacing the uth and (u+1)st

red monominos (at positions u− 1 and u) by a domino. See Figure 4.4. Observe that
since wt′(T ′

1) = −λu wt′(T1) and wt′(π′) = wt′(π)/λu, we have

wt′(T ′
1) wt

′(T ′
2) wt(π

′) = −wt′(T1) wt
′(T2) wt(π).

Moreover, we always have u′ ≥ u− 1 and a′ = u− 1 < a ≤ r, hence u′ ≥ a′ ̸= r.

Case 2 u ≥ a ̸= r. In this case we set T ′
2 = T2. Let A be the (a + 1)st tile in T1 (A starts at

position a). There are two subcases.

Case 2-1 A is a black monomino. In this case let

π′ = S1 · · ·SaHSa+1 · · ·Sm,

and define T ′
1 to be the Favard tiling obtained from T1 by replacing A by a red

monomino. See Figure 4.3 (with the roles of (T1, T2, π) and (T ′
1, T

′
2, π

′) interchanged).

Case 2-2 A is a domino. In this case let

π′ = S1 . . . SaUDSa+1 . . . Sm,

and define T ′
1 to be the Favard tiling obtained from T1 by replacing A by two red

monominos. See Figure 4.4 (with the roles of (T1, T2, π) and (T ′
1, T

′
2, π

′) interchanged).

Case 3 u ≥ a = r and v < b. This can be done similarly as Case 1. The only difference is that
we set T ′

1 = T1 and consider the steps of π from the right.

Case 4 u ≥ a = r and v ≥ b ̸= s. This can be done similarly as Case 2.

Case 5 u ≥ a = r and v ≥ b = s. In this case we set (T ′
1, T

′
2, π

′) = (T1, T2, π). See Figure 4.5.

By the construction, Case 1 corresponds to Case 2 and Case 3 corresponds to Case 4. Thus
the map ϕ(T1, T2, π) = (T ′

1, T
′
2, π

′) is a sign-reversing weight-preserving involution on X with fixed
points (∅, ∅, π) where π ∈ Y . This completes the proof.
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Figure 4.4: A triple (π, T1, T2) ∈ X in Case 1-2 on the left and the corresponding triple
(π′, T ′

1, T
′
2) ∈ X in Case 2-2 on the right, where r = 4, s = 2, and n = 5. The peak (an up-

step followed by a down step) (1, 1) → (2, 2) → (3, 1) in π is collapsed to a point.

u = 4
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v = 3
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T1 = 0 1
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Figure 4.5: A triple (π, T1, T2) ∈ X in Case 5, where r = 4, s = 2, and n = 5.



Chapter 5

Moments of classical orthogonal
polynomials

In this chapter we apply the combinatorial interpretation of moments for Tchebyshev polynomials
of the 1st and 2nd kinds, Hermite polynomials, Charlier polynomials, and Laguerre polynomials.

Note that a monic OPS {Pn(x)}n≥0 can be defined in many ways, namely, one of the following
determines the orthogonal polynomials:

(1) the coefficients {an,k}n,k≥0 of Pn(x) =
∑n

k=0 an,kx
k,

(2) the generating function
∑

n≥0 Pn(x)t
n or

∑
n≥0 Pn(x)t

n/n!,

(3) the moments {µn}n≥0,

(4) the 3-term recurrence coefficients {bn}n≥0 and {λn}n≥1.

5.1 Tchebyshev polynomials

In this section we will compute the moments of Tchebyshev polynomials using Theorem 4.3.1. We
will first consider Tchebyshev polynomials of the second kind since they are simpler than the first
kind in our approach.

The Tchebyshev polynomials of the second kind Un(x) are defined by

Un(x) =
sin(n+ 1)θ

sin θ
, x = cos θ, n ≥ 0.

They satisfy
Un+1(x) = 2xUn(x)− Un−1(x), n ≥ 0,

where U−1(x) = 0 and U0(x) = 1. Using calculus we can prove that∫ 1

−1

Um(x)Un(x)(1− x2)1/2dx =
π

2
δm,n.

Let L be the linear functional defined by

L(f(x)) = 2

π

∫ 1

−1

f(x)(1− x2)1/2dx.

Then {Un(x)}n≥0 is an OPS for L and L(1) = 1.

Since Un(x) has leading coefficient 2n, the monic Tchebyshev polynomials Ûn(x) are given by
Ûn(x) = 2−nUn(x) and

Ûn+1(x) = (x− bn)Ûn(x)− λnÛn−1(x), n ≥ 0,

38
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where bn = 0 and λn = 1/4.
Note that {Ûn(x)}n≥0 is also an OPS for L. Using calculus we can prove that the moments

µn = L(xn) = 2

π

∫ 1

−1

xn(1− x2)1/2dx

are given by

µ2n =
1

4n
Cn, µ2n+1 = 0. (5.1.1)

We will prove this combinatorially using the combinatorial interpretation for µn.
By Theorem 4.3.1,

µn =
∑

π∈Motzn

wt(π) =
∑

π∈Dyckn

(
1

4

)n/2

.

Thus

µ2n =
1

4n
|Dyck2n |, µ2n+1 = 0.

This is the same as (5.1.1).

Now we consider the Tchebyshev polynomials of the first kind, Tn(x) = cosnθ, x = cos θ.
Recall that ∫ 1

−1

Tm(x)Tn(x)(1− x2)−1/2dx = 0, m ̸= n.

Let L be the linear functional defined by

L(f(x)) = 1

π

∫ 1

−1

f(x)(1− x2)−1/2dx.

Then {Tn(x)}n≥0 is an OPS for L and L(1) = 1. The moments

µn = L(xn) = 1

π

∫ 1

−1

xn(1− x2)−1/2dx

are given by

µ2n =
1

22n

(
2n

n

)
, µ2n+1 = 0. (5.1.2)

We will prove this combinatorially.
The monic Tchebyshev polynomials of the first kind are given by T̂0(x) = 1 and T̂n(x) =

21−nTn(x) for n ≥ 1. We have

T̂n+1(x) = (x− bn)T̂n(x)− λnT̂n−1(x), n ≥ 0,

where bn = 0 for n ≥ 0, λ1 = 1/2, and λn = 1/4 for n ≥ 2.
By Theorem 4.3.1,

µn =
∑

π∈Motzn

wt(π) =

(
1

4

)n/2 ∑
π∈Dyckn

2a(π),

where a(π) is the number of down steps in π touching the x-axis. Thus (5.1.2) is a consequence
of the following proposition.

Proposition 5.1.1. We have ∑
π∈Dyck2n

2a(π) =

(
2n

n

)
. (5.1.3)
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↓

Figure 5.1: The map reflecting each path with a red down step.

Proof. Define a colored Dyck path to be a Dyck path in Dyck2n such that every down step
touching the x-axis is colored red or black. The left-hand side of the equation is the number of
colored Dyck paths in Dyck2n. Thus it suffices to show that this number is equal to

(
2n
n

)
.

Note that every Dyck path π ∈ Dyck2n is decomposed into

π = (Uπ1D)(Uπ2D) · · · (UπkD),

where πi ∈ Dyck2ti for some ti ∈ Z≥0. Each down step D after πi touches the x-axis and no other
down steps have this property. Thus a colored Dyck path can be identified with a sequence of the
form

π = (Uπ1D1)(Uπ2D2) · · · (UπkDk),

where each Di is colored red or black. If Di is colored red, reflect the subpath UπiD about the
x-axis. Then we get a path from (0, 0) to (2n, 0) consisting of up steps and down steps (which
may go below the x-axis).

This map gives a bijection between the colored Dyck paths from (0, 0) to (2n, 0) to any path
from (0, 0) to (2n, 0) consisting of up steps and down steps. Since there are

(
2n
n

)
such paths, we

obtain the result.

5.2 Hermite polynomials

The Hermite polynomials Hn(x) are defined by H−1(x) = 0, H0(x) = 1, and

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1.

Since the leading coefficient of Hn(x) is 2
n, we can make it monic by letting Ĥn(x) = 2−nHn(x).

Then Ĥ−1(x) = 0, Ĥ0(x) = 1, and

Ĥn+1(x) = xĤn(x)−
n

2
Ĥn−1(x), n ≥ 1. (5.2.1)

For the combinatorial study of orthogonal polynomials, it is more convenient if the recurrence
coefficients bn and λn are integers. We can rescale orthogonal polynomials using the following
lemma.

Lemma 5.2.1 (Rescaling OPS). Suppose that {Pn(x)}n≥0 is a monic OPS such that P−1(x) = 0,
P0(x) = 1, and

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x), n ≥ 1. (5.2.2)

Let P̃n(x) = anPn(x/a), where a ̸= 0. Then P̃−1(x) = 0, P̃0(x) = 1, and

P̃n+1(x) = (x− abn)P̃n(x)− a2λnP̃n−1(x), n ≥ 1. (5.2.3)
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Proof. Replacing x by x/a and multiplying both sides by an+1 in (5.2.2) yields (5.2.3).

Define the rescaled Hermite polynomials H̃n(x) by H̃n(x) =
√
2
n
Ĥn(x/

√
2). By Lemma 5.2.1

and (5.2.1), H̃−1(x) = 0, H̃1(x) = 1, and

H̃n+1(x) = xH̃n(x)− nH̃n−1(x), n ≥ 1. (5.2.4)

We note that Hn(x) are called “physicist’s Hermite polynomials” and H̃n(x) are called “prob-
abilist’s Hermite polynomials”.

The moment µn of {H̃n(x)}n≥0 is given by

µn =
∑

π∈Motzn

wt(π),

where wt(π) is determined by bn = 0 and λn = n. Since bn = 0, we have µ2n+1 = 0 and

µ2n =
∑

π∈Dyck2n

wt(π).

Note that for each π ∈ Dyck2n, its weight wt(π) is a positive integer. It is thus natural to ask
what combinatorial objects wt(π) counts.

Definition 5.2.2. A Hermite history is a Dyck path where each down step starting at height
k has a label in {1, . . . , k}. Let HH2n denote the set of Hermite histories whose underlying Dyck
paths are from (0, 0) to (2n, 0).

Let π ∈ Dyck2n. For each down step of π starting at height k, there are k ways to assign a
label from {1, . . . , k}. Thus wt(π) is the number of Hermite histories with underlying Dyck path
π. This implies µ2n = |HH2n |.

Let CM2n be the set of complete matchings on [2n].

Proposition 5.2.3. There is a bijection between HH2n and CM2n.

Proof. Let π ∈ HH2n. We construct a complete matching ρ as follows. For k = 1, . . . , 2n, if the
kth step of π is an up step, then make the kth vertex of ρ to be an opener, which means it will
be connected to a vertex to its right. If the kth step of π is a down step, then make the kth vertex
of ρ to be a closer, which means it will be connected to a vertex to its left. If the kth step of π is
a down step with label ak, then connected the vertex at k with the kth closest available opener.
For example, see Figure 5.2.

Observe that the height of the starting point of the kth down step is equal to the number
of available openers for the vertex k. Therefore the map π 7→ ρ is well-defined. The inverse
map ρ 7→ π is straighforward to construct. Hence the map π 7→ ρ is a bijection from HH2n and
CM2n.

Since the number of complete matchings on [2n] is (2n− 1)!!, we obtain the following result.

Corollary 5.2.4. The 2nth moment of rescaled Hermite polynomials H̃n(x) is

µ2n = (2n− 1)!!.

5.3 Charlier polynomials

The (normalized) Charlier polynomials Cn(x; a) are defined by C−1(x; a) = 0, C1(x; a) = 1,
and

Cn+1(x; a) = (x− n− a)Cn(x; a)− anCn−1(x; a), n ≥ 1.
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3

1 2 1

1

Figure 5.2: A Hermite history (top), the openers and closers (middle), and the corresponding
matching (bottom).

Definition 5.3.1. A Charlier history is a Motzkin path where each horizontal step at height k
has a label in {0, 1, . . . , k} and each down step starting at height k has a label in {1, . . . , k}. Let
CHn denote the set of Charlier histories whose underlying Motzkin paths are from (0, 0) to (n, 0).
For ρ ∈ CHn, define t(ρ) to the number of horizontal steps with label 0 plus the number of down
steps.

Since bk = k + a and λk = ak, by the definition of the Charlier histories, the moment µn of
the Charlier polynomials is given by

µn =
∑

π∈Motzn

wt(π) =
∑

ρ∈CHn

at(ρ).

For a set partition σ, let block(σ) denote the number of blocks in σ.

Theorem 5.3.2. The moment µn of the Charlier polynomials is given by

µn =
∑
σ∈Πn

ablock(σ).

Proof. We will construct a weight-preserving bijection ϕ : CHn → Πn. Let ρ ∈ CHn. We construct
the corresponding set partition ϕ(ρ) = σ ∈ Πn as follows. For k = 1, . . . , n,

• if the kth step of ρ is an up step, then make the kth vertex of σ to be an opener,

• if the kth step of ρ is a down step, then make the kth vertex of ρ to be a closer,

• if the kth step of ρ is a horizontal step, then make the kth vertex of ρ to be a transient,
which means that it is connected to a vertex to its left and also a vertex to its right.

If the kth step of ρ is a down step with label ak, then connected the vertex at k with the kth
closest available opener or transient. If the kth step of ρ is a horizontal step with label ak, then
connected the vertex at k with the kth closest available opener or transient. Here, if ak = 0, we
the vertex k is connected to itself making it a singleton. For example, see Figure 5.3.

It is not hard to see that ϕ : CHn → Πn is a bijection. Moreover, if ϕ(ρ) = σ, then t(ρ) =
block(σ). This can be seen from the observation that every block of ρ is either a singleton
(corresponding to a horizontal step with label 0) or a block with exactly one closer (corresponding
to a down step). This completes the proof.
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Figure 5.3: A Charlier history (top), the openers, closers, and transients (middle), and the corre-
sponding set partition (bottom).

5.4 Laguerre polynomials

The (normalized) Laguerre polynomials L
(α)
n (x) are defined by1 L

(α)
−1 (x) = 0, L

(α)
1 (x) = 1, and

L
(α)
n+1(x) = (x− 2n− α)L(α)

n (x)− n(n− 1 + α)L
(α)
n−1(x), n ≥ 1.

Lemma 5.4.1. Suppose that {Pn(x)}n≥0 is a monic OPS such that

Pn+1(x) = (x− bn)Pn(x)− an−1cnPn−1(x).

Then
µn =

∑
π∈Motzn

wt′(π),

where wt′(π) is the product of the weights of the steps in π and

• the weight of an up step starting at height k is ak,

• the weight of a horizontal step at height k is bk,

• the weight of a down step starting at height k is ck.

Proof. We know that

µn =
∑

π∈Motzn

wt(π),

where wt(π) is the product of bk for each horizontal step of height k and λk = akck for each down
step starting at height k. Observe that for π ∈ Motzn every down step corresponds to a unique
up step. More precisely, if we write π as a sequence of steps S1 · · ·Sn and if Si = D, then there is
a unique index j such that Sj = U and Sj+1 · · ·Si−1 is a (translated) Dyck path in Dycki−j−1.

Thus we can split the weight λk = akck on a down step starting at height k into the weight
ak of the corresponding up step and the weight ck of the down step as shown in Figure 5.4. This
proves the lemma.

By Lemma 5.4.1, the moment of the Laguerre polynomials is given by

µn =
∑

π∈Motzn

wt′(π), (5.4.1)

where ak = k + α, bk = 2k + α, and ck = k.

1In the literature it is more common to define the Laguerre polynomials with α replaced by α+1 in our definition.
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Figure 5.4: Splitting the weight λk = ak−1ck into ak−1 and ck.

Definition 5.4.2. A Laguerre history is a Motzkin path where

• each up step starting at height k has a label in {0, 1, . . . , k},

• each horizontal step at height k has a label in {−k, . . . ,−1, 0, 1, . . . , k},

• each down step starting at height k has a label in {1, 2, . . . , k},

Let LHn denote the set of Laguerre histories whose underlying Motzkin paths are from (0, 0)
to (n, 0). For ρ ∈ LHn, define zero(ρ) to be the number of labels equal to 0 in ρ.

Then (5.4.1) is equivalent to

µn =
∑

ρ∈LHn

αzero(ρ).

There are several bijections betweenSn and LHn due to Françon–Viennot [5], Foata–Zeilberger
[4], see also [3, Algorithm 7]. To prove the following theorem we use a slight modification of the
bijection due to Françon–Viennot [5].

Theorem 5.4.3. We have
µn =

∑
π∈Sn

αcycle(π).

Proof. It suffices to find a bijection ϕ : LHn → Sn such that if ϕ(ρ) = π, then zero(ρ) = cycle(π).
Consider π ∈ LHn and let Sk be the kth step of π and let ℓk be its label.

For each k = 0, 1, . . . , n, we will construct a list Ak of cycles of integers and dots, ’s. First
we set A0 = ∅. We then construct Ak recursively as follows.

Case 1: Sk is an up step.

Case 1-1: ℓk = 0. Create a new cycle “(k )” at the beginning:

Ak = (k )Ak−1.

Case 1-2: ℓk = i > 0. Replace the ith dot in Ak−1 by “ k ”.

Case 2: Sk is a horizontal step.

Case 2-1: ℓk = 0. Create a new cycle “(k)” at the beginning:

Ak = (k)Ak−1.

Case 2-2: ℓk = i > 0. Replace the ith dot in Ak−1 by “k ”.

Case 2-3: ℓk = −i < 0. Replace the ith dot in Ak−1 by “ k”.

Case 3: Sk is a down step. Then ℓk = i > 0. Replace the ith dot in Ak−1 by “k”.
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Figure 5.5: A Laguerre history in LH11.

Then we define ϕ(ρ) to the permutation π whose cycle decomposition is An.
For example, if ρ is the Laguerre history in Figure 5.5, then

A0 = ∅,
A1 = (1, ),

A2 = (1, , 2, ),

A3 = (3), (1, , 2, ),

A4 = (3), (1, 4, 2, ),

A5 = (5, ), (3), (1, 4, 2, ),

A6 = (5, ), (3), (1, 4, 2, , 6, ),

A7 = (5, ), (3), (1, 4, 2, , 7, 6, ),

A8 = (5, ), (3), (1, 4, 2, , 7, 6, 8),

A9 = (5, ), (3), (1, 4, 2, 9, , 7, 6, 8),

A10 = (5, ), (3), (1, 4, 2, 9, 10, 7, 6, 8),

A11 = (5, 11), (3), (1, 4, 2, 9, 10, 7, 6, 8).

The number of dots in Ak−1 is always equal to the ending height, say hk−1, of S1 · · ·Sk−1.
Since hk−1 is the height of the starting point of Sk, we have |ℓk| ≤ hk−1. Hence, if |ℓk| = i ̸= 0,
we can always find the ith dot in Ak−1 and the above construction is well defined.

We create a cycle if and only if ℓk = 0. Thus, zero(ρ) = cycle(π) as desired.
To prove that the map ϕ : LHn → Sn is invertible, we construct its inverse map. Let π ∈ Sn.

Then we write the cycles of Sn so that each cycle starts with its smallest element and the cycles
are listed in the decreasing order of their smallest elements. Let An be the list of cycles obtained
in this way. For k = n, n−1, . . . , 1, 0, we define Ak−1 to be the configuration obtained from Ak by
replacing k together with every dot “ ” adjacent to it by a single dot “ ”. If k forms a cycle of
length 1, then we delete the whole cycle “(k)”. Once the sequence A0, A1, . . . , An is constructed,
we can define the corresponding Laguerre history ρ whose kth step is Sk with label ℓk as follows.

For each k = 1, . . . , n, we compare Ak with Ak−1.

Case 1: Ak = (k )Ak−1. Then define Sk = U and ℓk = 0.

Case 2: Ak is obtained from Ak−1 by replacing the ith dot by “ k ”. Then Sk = U and ℓk = i.

Case 3: Ak = (k)Ak−1. Then define Sk = H and ℓk = 0.

Case 4: Ak is obtained from Ak−1 by replacing the ith dot by “k ”. Then Sk = D and ℓk = i.

Case 5: Ak is obtained from Ak−1 by replacing the ith dot by “ k”. Then Sk = D and ℓk = −i.

Then we define ψ(π) to be the resulting Laguerre history ρ.
By the construction, ψ is the inverse map of ϕ, and the proof is completed.
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By Theorem 5.4.3 and (3.4.4), we obtain the simple formula for µn.

Corollary 5.4.4. The nth moment of Laguerre polynomials is

µn = α(α+ 1) · · · (α+ n− 1).

Note that the bijection ϕ : LHn → Sn induces two bijections ϕ1 : CHn → Πn and ϕ2 : HHn →
CMn.

To see this, observe that a Laguerre history becomes a Charlier history if every up step has
the zero label, and every horizontal step has a nonnegative label. Then in the corresponding list
An of cycles, every cycle is an increasing list of integers. Hence the cycles can be identified with
blocks giving a set partition.

Similalry, a Laguerre history becomes a Hermite history if every up step has the zero label,
and there is no horizontal step. Then in the corresponding list An of cycles, every cycle is a pair
(i, j) of integers i < j. Hence the cycles can be identified with arcs giving a complete matching.

At this point the reader may wonder if there is another bijection between Laguerre histories
and permutations similar to the bijections in the previous sections using arcs. Indeed, there is such
a bijection due to Foata and Zeilberger [4]. We will briefly describe this bijection. For simplicity
we consider the case α = 1. In this map we use the usual Motzkin weight which gives a weight
bk = 2k+1 for a horizontal step starting at height k and a weight λk = k2 for a down step starting
at height k.

A modified Laguerre history of length n is a Motzkin path from (0, 0) to (n, 0) in which
every horizontal step with starting height k is labeled by an integer in {−k, . . . ,−1, 0, 1, . . . , k}
every down step with starting height k is labeled by a pair (i, j) of integers in {1, . . . , k}.

Let ρ be a modified Laguerre history. For k = 1, . . . , n, we construct a diagram on n vertices
as follows.

(1) The kth vertex is an opener, a closer, a fixed point, an upper transient, or a lower
transient if the kth step of ρ is an up step, a down step, a horizontal step with label 0, a
horizontal step with label 0, a horizontal step with positive label, or a horizontal step with
negative label, respectively.

(2) Using the label ℓk of the kth step of ρ, we connect a closer, an upper transient, or a lower
transient similarly to the bijections in the previous sections.

For example, see Figure 5.6.
Then the resulting diagram represent a permutation π where π(i) = j if i < j and i is connected

to j with an upper arc or i > j and i is connected to j with a lower arc. If there is no arc connecting
i, then π(i) = i. For example, the diagram in Figure 5.6 represent the following permutation:

π =

(
1 2 3 4 5 6 7 8 9 10 11
4 8 3 2 9 11 5 7 10 1 6

)
.

It is not hard to show that the above map ρ 7→ π is a bijection from the set of modified
Laguerre histories of length n to Sn. Moreover, this map has the property max(ρ) = LRmax(π),
where max(ρ) is the number of maximum possible labels of a horizontal step plus the number of
maximum possible labels in the first component of a down step and LRmax(π) is the number of
left-to-right maxima of π = π1 · · ·πn, that is πi such that πi = max{π1, . . . , πi}. This implies that

µn =
∑

π∈Sn

αLRmax(π).

For example, suppose ρ and π are as in Figure 5.6. Then the ith step is a horizontal step with
maximum possible label or a down step with maximum possible lable in the first component for
i = 4, 8, 9, 11. The left-to-right maxima of π are exactly 4, 8, 9, 11.
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Figure 5.6: A modified Laguerre history in LH11 and the corresponding diagram representing a
permutation.



Chapter 6

Duality between mixed moments
and coefficients

Suppose that {Pn(x)}n≥0 is a monic OPS given by

Pn(x) =

n∑
k=0

νn,kx
k.

In this chapter we will show that

xn =

n∑
k=0

µn,kPk(x),

where µn,k = L(xnPk(x))/L(Pk(x)
2) is the mixed moment. We then show the duality between

the mixed moments µn,k and the coefficients νn,k combinatorially. As special cases we obtain
various known dualities among binomial coefficients, q-binomial coefficients, Stirling numbers,
and elementary and homogeneous symmetric functions.

6.1 Mixed moments and coefficients

As before suppose that {Pn(x)}n≥0 is a monic OPS with a linear functional L given by

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x).

Recall from Definition 4.3.2 and Theorem 4.3.3 that the mixed moment µn,k has the following
combinatorial interpretation:

µn,k =
L(xnPk(x))

L(Pk(x))
=

∑
π∈Motzn,k

wt(π).

where Motzn,k is the set of Motzkin paths from (0, 0) to (n, k).

Proposition 6.1.1. We have

xn =

n∑
k=0

µn,kPk(x).

Proof. Let

xn =

n∑
k=0

σn,kPk(x).

48
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0 1 2 3 4 5 6 7

−λ1 −b3 −b4 −b7

Figure 6.1: A Favard tiling T ∈ FT8,3 with wt′(T ) = λ1b3b4b7.

Multiplying Pk(x) and taking L both sides, we obtain

L(xnPk(x)) = σn,kL(Pk(x)
2).

Hence

σn,k =
L(xnPk(x))

L(Pk(x)2)
= µn,k,

as desired.

Now let νn,k be the coefficient of xk in Pn(x) so that

xn =

n∑
k=0

µn,kPk(x),

Pn(x) =

n∑
k=0

νn,kx
k.

Since {Pn(x)}n≥0 and {xn}n≥0 are bases of the space of polynomials, we have the following matrix
identities:

(νn,k)n,k≥0 (µn,k)n,k≥0 = (µn,k)n,k≥0 (νn,k)n,k≥0 = I.

Equivalently, ∑
k≥0

νn,kµk,m = δn,m, (6.1.1)

∑
k≥0

µn,kνk,m = δn,m. (6.1.2)

Since we have combinatorial interpretations for µn,k and νn,k, we can prove the above matrix
identities combinatorially. In fact, in the next section we will prove these combinatorially without
the assumption that λk ̸= 0.

6.2 Combinatorial proof of duality

Suppose that {bn}n≥0 and {λn}n≥1 are arbitrary sequences (λn may be zero). Then we can take
the following as definitions:

µn,k =
∑

π∈Motzn,k

wt(π),

νn,k =
∑

T∈FTn,k

wt′(T ),

where FTn,k is the set of Favard tilings in FTn with k red monominos, see Figure 6.1. Observe
that µn,k = νn,k = 0 if n < k.

The following theorem can be proved similarly to the proof of Theorem 4.4.1. We give a proof
of this theorem to compare it with that of the next theorem.
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Theorem 6.2.1. For nonnegative integers n and m, we have∑
k≥0

νn,kµk,m = δn,m.

Proof. Since the proof is similar to that of Theorem 4.4.1, we only give a sketch. Note that the
sum in the theorem is 0 if n < m because νn,kµk,m = 0 unless n ≥ k ≥ m. Thus we may assume
n ≥ m.

Let X be the set of pairs (T, π) of a Favard tiling T ∈ FTn,k and a Motzkin path π ∈ Motzk,m,
for some m ≤ k ≤ n. Let Y be the set of pairs (T, π) of a Favard tiling T ∈ FTn,n and a Motzkin
path π ∈ Motzn,m such that T has red monominos only and π has up steps only. Then Y has a
unique element if n = m; and Y = ∅ if n ̸= m.

Our goal is to find a weight-preserving sign-reversing involution ϕ : X → X with fixed point
set Y . To do this, let (T, π) ∈ X with T ∈ FTn,k and π ∈ Motzk,m. We write π = S1S2 · · ·Sk as
a sequence of steps. Let a, u be the integers defined as follows:

• a is the largest integer such that T starts with a red monominos,

• u is the largest integer such that π starts with u up steps.

We define ϕ(T, π) = (T ′, π′) in the following way. Here, a′, u′ are the integers defined similarly as
above using T ′ and π′.

Case 1 u < a. There are two subcases.

Case 1-1 Su+1 is a horizontal step. Let

π′ = S1 · · · Ŝu+1 · · ·Sk,

and define T ′ to be the Favard tiling obtained from T by replacing the (u + 1)st red
monomino by a black monomino. See Figure 6.2.

Case 1-2 Su+1 is a down step. Let

π′ = S1 · · · ŜuŜu+1 · · ·Sk,

and define T ′ to be the Favard tiling obtained from T by replacing the uth and (u+1)st
red monominos by a domino. See Figure 6.3.

Case 2 u ≥ a ̸= n. Let A be the (a+ 1)st tile in T . There are two subcases.

Case 2-1 A is a black monomino. In this case let

π′ = S1 · · ·SaHSa+1 · · ·Sk,

and define T ′ to be the Favard tiling obtained from T by replacing A by a red monomino.
See Figure 6.2 (with the roles of (T, π) and (T ′, π′) interchanged).

Case 2-2 A is a domino. In this case let

π′ = S1 . . . SaUDSa+1 . . . Sk,

and define T ′ to be the Favard tiling obtained from T by replacing A by two red
monominos. See Figure 6.3 (with the roles of (T, π) and (T ′, π′) interchanged).

Case 3 u ≥ a = n. Since u ≤ k ≤ n, we must have u = a = n. Then T has only red monominos
and π has only up steps. We define (T ′, π′) = (T, π).
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u = 2

π =

b2

0 1 2 3 4 5 6

−b3

a = 3

T =

u′ = 2

π′ =

0 1 2 3 4 5 6

a′ = 2

T ′ =

−b2−b3

Figure 6.2: A pair (T, π) ∈ X in Case 1-1 on the left and the corresponding triple (T ′, π′) ∈ X in
Case 2-1 on the right.

u = 2

π =
λ2

0 1 2 3 4 5

a = 3

T =

−b3
u′ = 3

π′ =

0 1 2 3 4 5T ′ =

a′ = 1

−b3−λ2

Figure 6.3: A pair (T, π) ∈ X in Case 1-2 on the left and the corresponding triple (T ′, π′) ∈ X in
Case 2-2 on the right.
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The map ϕ : X → X is a weight-preserving sign-reversing involution with fixed point set Y .
Hence ∑

(T,π)∈X

wt′(T ) wt(π) =
∑

(T,π)∈Y

wt′(T ) wt(π) = δn,m.

Now we prove the other duality.

Theorem 6.2.2. For nonnegative integers n and m, we have∑
k≥0

µn,kνk,m = δn,m.

Proof. The proof is quite similar to that of Theorem 6.2.1 except that we consider the end of a
Motzkin instead of its beginning. Again, we may assume n ≥ m.

Let X be the set of pairs (π, T ) of a Motzkin path π ∈ Motzn,k and a Favard tiling T ∈ FTk,m,
for some m ≤ k ≤ n. Let Y be the set of pairs (π, T ) of a Motzkin path π ∈ Motzn,m and a
Favard tiling T ∈ FTm,m such that π has up steps only and T has red monominos only. Then Y
has a unique element if n = m; and Y = ∅ if n ̸= m.

Our goal is to find a weight-preserving sign-reversing involution ϕ : X → X with fixed point
set Y . To do this, let (π, T ) ∈ X with π ∈ Motzn,k and T ∈ FTk,m with m ≤ k ≤ n. We write
π = SnSn−1 · · ·S1 as a sequence of steps. Let a, u be the integers defined as follows:

• a is the largest integer such that T end with a red monominos,

• u is the largest integer such that π ends with u up steps.

We define ϕ(π, T ) = (π′, T ′) in the following way. Here, a′, u′ are the integers defined similarly as
above using π′ and T ′.

Case 1 n ̸= u ≤ a. There are two subcases.

Case 1-1 Su+1 is a horizontal step. Let π
′ be the Motzkin path obtained from π by replacing

Su+1 by U and define T ′ to be the Favard tiling obtained from T by inserting a black
monomino before the last u red monominos. See Figure 6.4.

Case 1-2 Su+1 is a down step. Let π′ be the Motzkin path obtained from π by replacing
Su+1 by U and define T ′ to be the Favard tiling obtained from T by inserting a black
domino before the last u red monominos. See Figure 6.5.

Case 2 u > a. Since a < u ≤ k, we can let A be the (a+ 1)st tile from the right in T . There are
two subcases.

Case 2-1 A is a black monomino. Let π′ be the Motzkin path obtained from π by replacing
Sa+1 by H and define T ′ to be the Favard tiling obtained from T by deleting the
(a+ 1)st tile from the right in T . See Figure 6.4. (with the roles of (π, T ) and (π′, T ′)
interchanged).

Case 2-2 A is a domino. Let π′ be the Motzkin path obtained from π by replacing Sa+1 by
D and define T ′ to be the Favard tiling obtained from T by deleting the (a+ 1)st tile
from the right in T . See Figure 6.5. (with the roles of (π, T ) and (π′, T ′) interchanged).

Case 3 n = u ≤ a. Since n ≥ m ≥ a, we must have u = a = n. Then T has only red monominos
and π has only up steps. We define (π′, T ′) = (π, T ).

The map ϕ : X → X is a weight-preserving sign-reversing involution with fixed point set Y .
Hence ∑

(π,T )∈X

wt′(T ) wt(π) =
∑

(π,T )∈Y

wt′(T ) wt(π) = δn,m.
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u = 3

π = b2

0 1 2 3 4

−b0

a = 4

T =

u′ = 5

π′ =

0 1 2 3 4 5

−b0 −b2

a′ = 3

T ′ =

Figure 6.4: A pair (T, π) ∈ X in Case 1-1 on the left and the corresponding triple (T ′, π′) ∈ X in
Case 2-1 on the right.

u = 3

π =
λ3

0 1 2 3 4

−b0

a = 4

T =

u′ = 5

π′ =

0 1 2 3 4 5 6

−b0 −λ3

a′ = 3

T ′ =

Figure 6.5: A pair (T, π) ∈ X in Case 1-2 on the left and the corresponding triple (T ′, π′) ∈ X in
Case 2-2 on the right.
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x1 x1

x2

x4

Figure 6.6: A path with steps U = (1, 1) and H = (1, 0) on the left and the corresponding path
with steps U ′ = (0, 1) and H = (1, 0) on the right.

6.3 Special case: elementary and homogeneous symmetric
functions

For the rest of this chapter we will study several special cases of the duality between µn,k and
νn,k. In this section we consider the case that bk are arbitrary and λk = 0. The next sections will
cover some interesting special cases of this.

Suppose that bk = xk and λk = 0, where x0, x1, . . . are indeterminates. Observe that if λk = 0,
then π ∈ Motzn,k is a path from (0, 0) → (n, k) consisting of up steps U = (1, 1) and horizontal
steps H = (1, 0). By replacing each U = (1, 1) by U ′ = (1, 0), we can identify π as a path from
(0, 0) to (n− k, k), see Figure 6.6.

Therefore we can write
µn,k =

∑
π:(0,0)→(n−k,k)

wt(π),

where the sum is over all paths π from (0, 0) to (n− k, k) with steps U ′ and H, and wt(π) is the
product of xk for each horizontal step of height k. Such a path is completely determined by its
weight. For example, the path in Figure 6.6 is the unique path from (0, 0) to (4, 3) with weight
x21x2x3. Moreover, every weight is of the form xi1 · · ·xin−k

with 0 ≤ i1 ≤ · · · ≤ in−k ≤ k. Thus

µn,k =
∑

0≤i1≤···≤in−k≤k

xi1 · · ·xin−k
. (6.3.1)

This is a homogeneous symmetric polynomial.

Definition 6.3.1. Let x = (x0, x1, . . . ) be a sequence of variables. A power series f(x0, x1, . . . )
in the variables x is called a symmetric function if it is invariant under permuting variables. A
homogeneous symmetric function hk is defined by

hk =
∑

i1≤···≤ik

xi1 · · ·xik .

An elementary symmetric function ek is defined by

ek =
∑

i1<···<ik

xi1 · · ·xik .

We define h0 = e0 = 1 and hk = ek = 0 if k < 0. A homogeneous symmetric polynomial
hk(x0, x1, . . . , xn) is defined by

hk(x0, x1, . . . , xn) =
∑

0≤i1≤···≤ik≤n

xi1 · · ·xik .
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0 1 2 3 4 5 6

−x1 −x3 −x4 −x6

Figure 6.7: A Favard tiling with red monominos and black monominos.

An elementary symmetric polynomial ek(x0, x1, . . . , xn) is defined by

ek(x0, x1, . . . , xn) =
∑

0≤i1<···<ik≤n

xi1 · · ·xik .

For example,

h1(x0, x1, x2) = e1(x0, x1, x2) = x0 + x1 + x2,

h2(x0, x1, x2) = x20 + x21 + x22 + x0x1 + x0x2 + x1x2,

e2(x0, x1, x2) = x0x1 + x0x2 + x1x2,

e3(x0, x1, x2) = x0x1x2.

Then we can rewrite (6.3.1) as follows.

Theorem 6.3.2. Suppose that bk = xk and λk = 0. Then

µn,k = hn−k(x0, x1, . . . , xk).

Now we consider
νn,k =

∑
T∈FTn,k

wt′(T ).

Since λi = 0, every T ∈ FTn,k has red monominos and black monominos only. Hence, T is
determined by choosing n− k squares for black monominos in a 1× n board. Moreover, wt′(T ) is
of the form (−1)n−kxi1 · · ·xin−k

for some 0 ≤ i1 < · · · < in−k ≤ n− 1, see Figure 6.7. This shows
that

νn,k =
∑

0≤i1<···<in−k≤n−1

(−1)n−kxi1 · · ·xin−k
.

This can be restated as follows.

Theorem 6.3.3. Suppose that bk = xk+1 and λk = 0. Then

νn,k = (−1)n−ken−k(x0, x1, . . . , xn−1).

By the duality (Theorem 6.2.1 and Theorem 6.2.2) and Theorem 6.3.2 and Theorem 6.3.3, we
obtain the following corollary.

Corollary 6.3.4. The following matrix identities hold:

(hn−k(x0, x1, . . . , xk))n,k≥0

(
(−1)n−ken−k(x0, x1, . . . , xn−1)

)
n,k≥0

= I,(
(−1)n−ken−k(x0, x1, . . . , xn−1)

)
n,k≥0

(hn−k(x0, x1, . . . , xk))n,k≥0 = I.

Equivalently, for fixed integers n,m ≥ 0,∑
k≥0

hn−k(x0, x1, . . . , xk)(−1)k−mek−m(x0, x1, . . . , xk−1) = δn,m, (6.3.2)

∑
k≥0

(−1)n−ken−k(x0, x1, . . . , xn−1)hk−m(x0, x1, . . . , xm) = δn,m. (6.3.3)
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Suppose that N = n−m ≥ 0. Then, by shifting the index k 7→ k +m in (6.3.3), we have∑
k≥0

(−1)N−keN−k(x0, x1, . . . , xm+N−1)hk(x0, x1, . . . , xm) = δN,0.

If we let m→ ∞, we obtain the well-known identity∑
k≥0

(−1)keN−khk = δN,0.

6.4 Special case: binomial coefficients

In this section we consider the case bk = 1 and λk = 0. We will show that the duality of this case
is related to the principle of inclusion and exclusion.

Suppose bk = 1 and λk = 0. As observed in the previous section, in this case µn,k is the
number of paths from (0, 0) to (n − k, k) using steps (1, 0) and (0, 1). Thus µn,k =

(
n
k

)
. On the

other hand, νn,k is (−1)n−k times the number of Favard tilings of size n with k red monominos
and n− k black monominos. Hence νn,k = (−1)n−k

(
n
k

)
.

Proposition 6.4.1. If bk = 1 and λk = 0, we have

µn,k =

(
n

k

)
, νn,k = (−1)n−k

(
n

k

)
.

As a corollary, we obtain the following duality between binomial coefficients.

Corollary 6.4.2. We have((
n

k

))
n,k≥0

(
(−1)n−k

(
n

k

))
n,k≥0

=

(
(−1)n−k

(
n

k

))
n,k≥0

((
n

k

))
n,k≥0

= I.

Equivalently, ((
n

k

))−1

n,k≥0

=

(
(−1)n−k

(
n

k

))
n,k≥0

. (6.4.1)

Equation (6.4.1) has an interesting connection with the principle of inclusion and exclusion.
To see this, suppose that A1, . . . , An are subsets of a set X. For a subset I ⊆ [n], we define

A=I = {x ∈ X : x ∈ Ai if and only if i ∈ I},
A≥I = {x ∈ X : x ∈ Ai for all i ∈ I}.

In other words, A=I is the set of elements x which are contained in exactly those Ai for i ∈ I and
A≥I is the set of elements x which are contained in at least those Ai for i ∈ I.

Note that
A≥I =

⋂
i∈I

Ai =
⋃
J⊇I

A=J .

Thus
|A≥I | =

∑
J⊇I

|A=J | . (6.4.2)

We can invert this equation as follows, which is a form of the principle of inclusion and exclusion.

Lemma 6.4.3. For any subset I of [n], we have

|A=I | =
∑
J⊇I

(−1)|J−I| |A≥J | . (6.4.3)
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Proof. We will prove this by considering the contribution of each element x ∈ X to both sides of
the equation. Note that every x ∈ X is contained in AK for a unique subset K of [n]. We consider
the following three cases.

Case 1: K = I. Then the contribution of x in both sides is 1.

Case 2: K ⊋ I. Then the contribution of x to the left-hand side is 0. The contribution of x to
the right-hand side is

∑
I⊆J⊆K

(−1)|J−I| =
∑

J⊆(K−I)

(−1)|J| =

|K−I|∑
j=0

(−1)j
(
|K − I|

j

)
= 0.

Case 3: K ̸⊇ I. In this case the contribution of x in both sides is 0.

Since the contribution of x to both sides is always the same, the identity holds.

If I = ∅, we obtain the following common form of the principle of inclusion and exclusion:

|Ac
1 ∩ · · · ∩Ac

n| =
n∑

k=0

(−1)k
∑

i1<···<ik

|Ai1 ∩ · · · ∩Aik |

= |X| − |A1| − · · · − |An|
+ |A1 ∩A2|+ |A1 ∩A3|+ · · ·+ |An−1 ∩An|
− · · ·
+ (−1)n|A1 ∩ · · · ∩An|.

Example 6.4.4. A derangement is a permutation without fixed points. Let dn be the number
of derangements in Sn. To compute dn, we define X = Sn and Ai = {π ∈ X : π(i) = i}. Then

dn = |A=∅| =
∑
J⊆[n]

(−1)|J||A≥J |.

If J = {j1, . . . , jk}, then |A≥J | = (n− k)!. Thus

dn =
n∑

k=0

(−1)k
(
n

k

)
(n− k)! = n!

n∑
k=0

(−1)k

k!
.

Note that
dn
n!

=

n∑
k=0

(−1)k

k!
≈ 1

e
= 0.367879441171 · · · .

In the previous example, A=I and A≥I depend only on the cardinality of I. In this case let
ak = |A=I | and bk = |A≥I | for any subset I of cardinality k. Then (6.4.2) and (6.4.3) can be
written as

bk =

n∑
j=k

(
n− k

j − k

)
aj =

n−k∑
j=0

(
n− k

j

)
aj+k,

ak =

n∑
j=k

(−1)j−k

(
n− k

j − k

)
bj =

n−k∑
j=0

(−1)j
(
n− k

j

)
bj+k.
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To make things look nicer, let b′k := bn−k and a′k := an−k. Then the above equations can be
rewritten as

b′n−k =

n−k∑
j=0

(
n− k

n− k − j

)
a′n−k−j =

n−k∑
j=0

(
n− k

j

)
a′j ,

a′n−k =

n−k∑
j=0

(−1)j
(

n− k

n− k − j

)
b′n−k−j =

n−k∑
j=0

(−1)n−k−j

(
n− k

j

)
b′j .

Finally, replacing k by n− k, we obtain

b′k =

k∑
j=0

(
k

j

)
a′j ,

a′k =
k∑

j=0

(−1)k−j

(
k

j

)
b′j .

Equivalently, b
′
0
...
b′n

 =

((
i

j

))n

i,j=0

a
′
0
...
a′n


a

′
0
...
a′n

 =

(
(−1)i−j

(
i

j

))n

i,j=0

b
′
0
...
b′n


Since a′i and b

′
i can be anything, we have the following matrix identity:((

i

j

))n

i,j=0

=

(
(−1)i−j

(
i

j

))n

i,j=0

,

which is equivalent to (6.4.1).

6.5 Special case: q-binomial coefficients

In this section we consider the case bk = qk and λk = 0. This case gives q-binomial coefficients.
We first need some definitions. From now on, we treat q as an indeterminate.

Definition 6.5.1. For a nonnegative integer n, the q-integer [n]q is defined by

[n]q =
1− qn

1− q
= 1 + · · ·+ qn−1.

The q-factorial [n]q! and the q-binomial coefficient
[
n
k

]
q
, for 0 ≤ k ≤ n, are defined by

[n]q! = [1]q[2]q · · · [n]q,
[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
.

We also define
[
n
k

]
q
= 0 if n < k.

Note that if q = 1, then

[n]q = n, [n]q! = n!,

[
n

k

]
q

=

(
n

k

)
.
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Figure 6.8: The Young diagram of the partition λ = (4, 3, 1) and its transpose λ′ = (3, 2, 2, 1).
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Figure 6.9: The path corresponding to a partition λ = (4, 3, 1) contained in a rectangle (54).

Lemma 6.5.2. For 0 ≤ k ≤ n, we have[
n

k

]
q

= qn−k

[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

. (6.5.1)

Proof. We compute

qn−k

[
n− 1

k − 1

]
q

+

[
n− 1

k

]
q

=
qn−k[n− 1]q!

[n− k]q![k − 1]q!
+

[n− 1]q!

[n− 1− k]q![k]q!
,

=
[n− 1]q!

[n− k]q![k]q!

(
qn−k[k]q + [n− k]q

)
,

=
[n− 1]q!

[n− k]q![k]q!
[n]q =

[
n

k

]
q

.

Definition 6.5.3. A partition is a sequence of nonnegative integers λ = (λ1, . . . , λℓ) with λ1 ≥
· · · ≥ λℓ. Each λi is called a part of λ. The size of λ is defined to be |λ| = λ1 + · · · + λℓ.
The Young diagram of λ is a left-justified array of squares where the ith row has λi squares.
The transpose λ′ of λ is the partition whose Young diagram is obtained by reflecting the Young
diagram of λ along the diagonal as shown in Figure 6.8.

Let (ab) denote the partition with b parts equal to a. For two partitions λ and µ, we write
µ ⊆ λ to mean that the Young diagram of µ is contained in that of λ. Note that considering the
Young diagram, λ ⊆ ((n−k)k) can be identified with a path from (0, 0) to (n−k, k), see Figure 6.9.
The following proposition shows that the q-binomial coefficient

[
n
k

]
q
is always a polynomial in q.

Proposition 6.5.4. For 0 ≤ k ≤ n, we have[
n

k

]
q

=
∑

λ⊆((n−k)k)

q|λ|. (6.5.2)

Proof. We prove this by induction on n. If n = 0, then k = 0, and both sides are equal to 1. Let
n ≥ 1 and suppose that the statement holds for n− 1. To prove the statement for n, it suffices to
show that the right-hand side of the equation satisfies the same recurrence as (6.5.1).
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To this end consider λ = (λ1, . . . , λn−k) ⊆ ((n − k)k). If λ1 = n − k, then (λ2, . . . , λn−k) ⊆
((n − k)k−1) = ((n − 1 − (k − 1))k−1). If λ1 ≤ n − k − 1, then (λ1, . . . , λn−k) ⊆ ((n − k − 1)k).
Thus ∑

λ⊆((n−k)k)

q|λ| = qn−k
∑

λ⊆((n−1−(k−1))k−1)

q|λ| +
∑

λ⊆((n−1−k)k)

q|λ|,

which is the same recurrence as (6.5.1).

Note that by taking the transpose of λ, we can rewrite (6.5.2) as[
n

k

]
q

=
∑

λ⊆(kn−k)

q|λ|. (6.5.3)

Now we are ready to consider the mixed moments and coefficients when bk = qk and λk = 0.

Proposition 6.5.5. If bk = qk and λk = 0, we have

µn,k =

[
n

k

]
q

, νn,k = (−1)n−kq(
n−k

2 )
[
n

k

]
q

.

Proof. By Theorem 6.3.2 and Theorem 6.3.3, we have

µn,k = hn−k(x0, x1, . . . , xk),

νn,k = (−1)n−ken−k(x0, x1, . . . , xn−1),

where xi = qi. Thus, by (6.5.2),

µn,k =
∑

0≤i1≤···≤in−k≤k

qi1+···+in−k =
∑

µ⊆(kn−k)

q|µ| =

[
n

k

]
q

.

The second identity follows from

en−k(1, q, . . . , q
n) =

∑
0≤i1<···<in−k≤n−1

qi1+···+in−k

=
∑

0≤j1≤···≤jn−k≤k

q0+1+···+(n−k−1)qj1+···+jn−k

= q(
n−k

2 )
∑

µ⊆(kn−k)

q|µ| = q(
n−k

2 )
[
n

k

]
q

,

where the change of indices (i1, i2, . . . , in−k) = (j1 + 0, j2 + 1, . . . , jn−k + n− k + 1) is used.

6.6 Special case: Stirling numbers

In this section we consider the case bk = k and λk = 0. In this case we obtain the duality between
Stirling numbers of the first kind and second kind.

Theorem 6.6.1. If bk = k and λk = 0, then

µn,k = S(n, k), νn,k = s(n, k).

Proof. We have

µn,k =
∑

π∈Motzn,k

wt(π).

Recall that if bk = k + 1 and λk = k, then µn is the number of Charlier histories from (0, 0) to
(n, 0). In our case bk = k and λk = 0, the same bijection shows that µn,k is the number of paths
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1 1

2

1 3

1 2 3 54 86 7

Figure 6.10: A partial Charlier history (top) and the corresponding set partition, where every
block has a half edge attached at the end (bottom).

from (0, 0) to (n, k) consisting of H = (1, 0) and U = (1, 1) in which every horizontal step at height
h has a label in {1, . . . , h}. We can apply the same bijection between Charlier histories and set
partitions to these (partial) Charlier as shown in Figure 6.10. Since there are no singleton blocks
and no closers, we obtain that such (partial) Charlier histories are in bijection with set partitions
of [n] into k blocks. This shows that µn,k = S(n, k).

Since bk = k + 1 and λk = k, we have

n∑
k=0

νn,kx
k =

∑
T∈FTn

wt(T ) = x(x− 1)(x− 2) · · · (x− n+ 1).

On the other hand, by (3.4.4), we have

n∑
k=0

s(n, k)xk = x(x− 1)(x− 2) · · · (x− n+ 1).

This proves the second identity also holds.



Chapter 7

Determinants of moments

We have learned that µn can be written using bn and λn. Since a monic OPS {Pn(x)}n≥0 (and
hence the recurrence coefficients bn and λn as well) is uniquely determined by µn, there must be a
way to express bn and λn using µn. In this chapter we find such an expression using nonintersecting
lattice paths and the Lindström–Gessel–Viennot lemma.

7.1 Computing the 3-term recurrence coefficients

Let us first see how one can compute µn using bn and λn for small n. Recall

µn =
∑

π∈Motzn

wt(π).

Thus, the first few moments are

µ1 = b0,

µ2 = b20 + λ1,

µ3 = b30 + 2b0λ1 + b1λ1.

Then we can solve for bn and λn:

b0 = µ1,

λ1 = µ2 − b20 = µ2 − µ2
1,

b1 = (µ3 − b30 + 2b0λ1)/λ1 = (µ3 − µ3
1 + 2µ1(µ2 − µ2

1))/(µ2 − µ2
1),

and so on. Although, the formula gets very complicated, we can convince ourselves that this
always gives a formula for bn and λn. We prove this rigorously as follows.

Suppose that we have computed b0, . . . , bn−1 and λ1, . . . , λn. Then in the sum

µ2n+1 =
∑

π∈Motz2n+1

wt(π),

bn appears only once as bnλnλn−1 · · ·λ1 for the Motzkin path UnHDn. Thus

bnλnλn−1 · · ·λ1 = µ2n+1 −
∑

π∈Motz2n+1,π ̸=UnHDn

wt(π). (7.1.1)

Since the sum on the right-hand side of (7.1.1) has only b0, . . . , bn−1 and λ1, . . . , λn, we can express
it using µk’s. Then dividing both sides of (7.1.1) by λ1 · · ·λn, which can also be written using
µk’s, we obtain a formula for bn in terms of µk’s.

62
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Similarly, if we have computed b0, . . . , bn and λ1, . . . , λn, then we can find a formula for λn+1

in terms of µk’s using

µ2n+2 =
∑

π∈Motz2n+2

wt(π),

because λn+1 appears only once for the path Un+1Dn+1.
The above algorithm shows that it is possible to express bn and λn using µn. To find an explicit

formula, we need to develop some interesting theory of lattice paths.

7.2 The Lindström–Gessel–Viennot lemma

The Lindström–Gessel–Viennot lemma [7, 6] is a very useful tool in combinatorics. This lemma is
listed in the book called “Proofs from The Book” [1, Chapter 32], which tries to collect the most
beautiful proofs in mathematics. We start with basic definitions on paths in a directed graph.

Definition 7.2.1. A graph is a pair G = (V,E) of two sets V and E such that E ⊆ V ×V . Each
element v ∈ V is called a vertex and each element (u, v) ∈ E is called an edge. We say that G
is undirected if (u, v) is identified with (v, u). Otherwise, G is said to be directed.

A path from u to v is a sequence of vertices (v0, v1, . . . , vn) such that v0 = u, vn = v, and
(vi, vi+1) ∈ E for all 0 ≤ i ≤ n − 1. A cycle is a path from a vertex to itself. For two vertices u
and v, we denote by P (u → v) the set of paths from u to v. If there is no cycle, G is said to be
acyclic.

An edge weight of G is a function w : E → K, for some commutative ring K. The weight
of a path p is defined to be the product of w(e) for every edge e in p.

We consider families of paths. For brevity, we define an n-path to be just an n-tuple p =
(p1, . . . , pn) of paths. We say that two paths p and p′ are nonintersecting if they do not have a
common vertex. We also say that an n-path p = (p1, . . . , pn) is nonintersecting if pi and pj are
nonintersecting for all i ̸= j.

Definition 7.2.2. Let G be a directed graph with edge weight w. Let A = (A1, . . . , An) and
B = (B1, . . . , Bn) be sequences of vertices of G. We denote by P (A → B) the set of n-paths
p = (p1, . . . , pn) such that pi ∈ P (Ai → Bσ(i)), 1 ≤ i ≤ n, for some σ ∈ Sn. We define
w(p) = w(p1) · · ·w(pn) and sgn(p) = sgn(σ). Finally, we define NI(A → B) to be the set of all
nonintersecting n-paths in P (A → B).

We are now ready to state the Lindström–Gessel–Viennot lemma.

Theorem 7.2.3 (The Lindström–Gessel–Viennot lemma). Let G be a directed graph with edge
weight w. Fix vertex sequences A = (A1, . . . , An) and B = (B1, . . . , Bn) and define the matrix
M = (Mi,j)

n
i,j=1 by

Mi,j =
∑

p∈P (Ai→Bj)

w(p).

Then we have
detM =

∑
p∈NI(A→B)

sgn(p)w(p).

Before proving this theorem let us consider an example.

Example 7.2.4. Let G be the directed graph whose vertex set V and (directed) edge set E are
given by

V = {(i, j) : 0 ≤ i, j ≤ 2},
E = {(i, j) → (i+ 1, j) : 0 ≤ i ≤ 1, 0 ≤ j ≤ 2} ∪ {(i, j) → (i, j + 1) : 0 ≤ i ≤ 2, 0 ≤ j ≤ 1}.
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A1 A2

B1 B2

A1 A2

B1 B2

A1 A2

B1 B2

Figure 7.1: All nonintersecting 3-paths from A1, A2 to B1, B2.

A1 A2

B1 B2

u

A1 A2

B1 B2

u

Figure 7.2: An intersecting 2-path (p1, p2) and the corresponding 2-path (q1, q2) obtained by
exchanged the tails after the first intersection u.

Define the weight of every edge to be 1. Let A = (A1, A2) and B = (B1, B2), where A1 = (0, 0),
A2 = (1, 0), B1 = (1, 2), and B2 = (2, 2). Then

detM = det

((
3
1

) (
4
2

)(
2
0

) (
3
1

)) = det

(
3 6
1 3

)
= 3.

On the other hand, there are exactly 3 nonintersecting 2-paths fromA toB as shown in Figure 7.1.

Note that in the above example, we can compute the number of nonintersecting 2-paths p ∈
NI(A → B) as follows. First, observe that if p = (p1, p2) ∈ NI(A → B), then p1 ∈ P (A1 → B1)
and p2 ∈ P (A2 → B2). Thus NI(A → B) is contained in the set P (A1 → B1) × P (A2 → B2)
whose cardinality is

(
3
1

)(
3
1

)
. So, if we subtract the number of intersecting 2-paths (p1, p2) ∈

P (A1 → B1)× P (A2 → B2), we would get the cardinality of NI(A → B).
Suppose that (p1, p2) ∈ P (A1 → B1)×P (A2 → B2) is intersecting. Then we can find the first

intersection point u of p1 and p2. Then we can write p1 = p′1p
′′
1 and p2 = p′2p

′′
2 , where p

′
i (resp. p

′′
i )

is the part of pi before u (resp. after u). By exchanging the tails p′′1 and p′′2 we can construct a
new 2-path (q1, q2), that is, q1 = p′1p

′′
2 and q2 = p′2p

′′
1 , see Figure 7.2.

Note that (q1, q2) ∈ P (A1 → B2) × P (A2 → B1), and any such 2-path is always intersecting
and thus gives rise to an intersecting 2-path (p1, p2) ∈ P (A1 → B1) × P (A2 → B2) by the same
process of exchanging the tails. Thus the number of intersecting 2-paths (p1, p2) ∈ P (A1 →
B1)× P (A2 → B2) is equal to

|P (A1 → B2)× P (A2 → B1)| =
(
4

2

)(
2

0

)
.

We have just shown that

|NI(A → B)| =
(
3

1

)(
3

1

)
−
(
4

2

)(
2

0

)
= det

((
3
1

) (
4
2

)(
2
0

) (
3
1

)) .
This idea of canceling intersecting 2-paths can be extended to prove Theorem 7.2.3.



CHAPTER 7. DETERMINANTS OF MOMENTS 65

u
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B1

B2

B3

u
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A3

B1

B2
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Figure 7.3: The involution ϕ exchanges the tails of p1 and p2 after their first intersection point u.

Proof of Theorem 7.2.3. By definition,

detM =
∑

σ∈Sn

sgn(σ)

n∏
i=1

Mi,σ(i) =
∑

σ∈Sn

sgn(σ)
∑

p∈P (Ai→Bσ(i))

w(p) =
∑

p∈P (A→B)

sgn(p)w(p).

Thus it suffices to find a sign-reversing and weight-preserving involution ϕ on P (A → B) with
fixed point set NI(A → B).

Consider an n-path p = (p1, . . . , pn) ∈ P (A → B) with pi ∈ P (Ai → Bσ(i)) for some σ ∈ Sn.
If p is nonintersecting, then define ϕ(p) = p. Suppose now that p is intersecting. Then we can
find the lexicographically smallest pair (r, s) such that pr and ps are intersecting. We can then
find the first intersection point, say u, of pr and ps. Let p

′
r and p′s to be the paths obtained from

pr and ps by exchanging their tails after u. We define ϕ(p) = q, where

q = (q1, . . . , qn) = (p1, . . . , pr−1, p
′
r, pr+1, . . . , ps−1, p

′
s, ps+1, . . . , pn).

See Figure 7.3.
Since p and q have the same set of edges (with the same multiplicities), we have w(p) = w(q).

Since pi ∈ P (Ai → Bσ(i)), we have qi ∈ P (Ai → Bσ′(i)), where σ
′ is the permutation obtained

from σ = σ1 · · ·σn by exchanging σi and σj . In other words, σ′ = σ(i, j), hence

sgn(p′) = sgn(σ′) = sgn(σ) = sgn(p).

Moreover, by the construction of ϕ, it is clearly an involution. Thus, ϕ is a sign-reversing and
weight-preserving involution ϕ on P (A → B) with fixed point set NI(A → B), which completes
the proof.

Corollary 7.2.5. Let G be a directed graph with edge weight w. Fix vertex sequences A =
(A1, . . . , An) and B = (B1, . . . , Bn) and define the matrix M = (Mi,j)

n
i,j=1 by

Mi,j =
∑

p∈P (Ai→Bj)

w(p).

Suppose that every nonintersecting n-path p = (p1, . . . , pn) ∈ NI(A → B) satisfies pi ∈ P (Ai →
Bi) for all 1 ≤ i ≤ n. Then

detM =
∑

p∈NI(A→B)

w(p).

In particular, if w(e) = 1 for all e ∈ E, then the number of nonintersecting n-paths is

|NI(A → B)| = detM.
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A1
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B1

B2

A1

A2

B1

B2

Figure 7.4: Two nonintersecting 2-paths (p1, p2) and (q1, q2) with different connecting patterns.

Example 7.2.6. The graph in Figure 7.3 and the vertices (A1, A2, A3) and (B1, B2, B3) satisfy
the conditions in Corollary 7.2.5. Thus The number of nonintersecting 3-paths from (A1, A2, A3)
and (B1, B2, B3) is

det


(
7
4

) (
7
3

) (
7
2

)(
7
5

) (
7
4

) (
7
3

)(
7
6

) (
7
5

) (
7
4

)
 = 4116.

Example 7.2.7. Not every directed graph and vertex sequences satisfy the conditions in Corol-
lary 7.2.5. See Figure 7.4. In this case,

detM = det

((
4
2

) (
6
3

)(
2
1

) (
4
2

)) = −4.

Note that the number of nonintersecting 2-paths (p1, p2) with pi ∈ P (Ai → Bσ(i)) is 2 if σ = 12
and 6 if σ = 21. This is in agreement of the Lindström–Gessel–Viennot lemma:

sgn(12) · 2 + sgn(21) · 6 = 2− 6 = −4.

Remark 7.2.8. What if Ai = Aj or Bi = Bj for some i ̸= j? Then clearly there is no nonin-
tersecting n-path from A to B. Thus, detM = 0. This can also be seen immediately from the
definition of the matrix M . For example, if Ai = Aj then row i and row j of M are identical so,
detM = 0.

Remark 7.2.9. What if Ai = Bj for some i ̸= j? Then every nonintersecting n-path p =
(p1, . . . , pn) must satisfy pi ∈ P (Ai → Bj). To see this suppose pi ∈ P (Ai → Bk) for some k ̸= j.
Then there is a path pr ∈ P (Ar → Bj) for some r ̸= i. Then pi and pr have a common vertex
Ai = Bj , a contradiction.

Note also that if Ai = Bj , then pi ∈ P (Ai → Bj) means that pi = (Ai) is a path of length
0, i.e., a path with no edges. Hence, if p = (p1, . . . , pn) is nonintersecting, then every path other
than pi does not touch the vertex Ai. This can be used to find the number of paths in G from u
to v avoiding a given list of vertices.

Example 7.2.10. Let G be a directed graph with vertices A1, . . . , An, B1, . . . , Bn and edges
(Ai, Bj) for 1 ≤ i, j ≤ n with edge weight w. Let A = (A1, . . . , An) and B = (B1, . . . , Bn). Then
each P (Ai → Bj) has only one path (Ai, Bj) with only one edge and every path p ∈ P (A → B)
is nonintersecting. Thus the matrix M = (Mi,j) has entries

Mi,j =
∑

p∈P (Ai→Bj)

w(p) = w(Ai, Bj).
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Then the Lindström–Gessel–Viennot lemma says

detM =
∑

p∈NI(A→B)

sgn(p)w(p) =
∑

p∈P (A→B)

sgn(p)w(p)

=
∑

σ∈Sn

sgn(σ)

n∏
i=1

w(Ai, Bσ(i)) =
∑

σ∈Sn

sgn(σ)

n∏
i=1

Mi,j ,

which is nothing but the definition of the determinant of a matrix.

There is an interesting application of the Lindström–Gessel–Viennot lemma to a useful deter-
minant identity called the Cauchy–Binet formula.

Definition 7.2.11. Let M = (Mi,j)i∈[m],j∈[n] be an m× n matrix. We denote by
(
[m]
k

)
the set of

all subsets of [m] with cardinality k. For I ⊆
(
[m]
k

)
and J ⊆

(
[n]
k

)
, the (I, J)-minor [M ]I,J of M is

defined by
[M ]I,J = det(Mi,j)i∈I,j∈J .

Theorem 7.2.12 (The Cauchy–Binet formula). Let M be an n × ℓ matrix let N be an ℓ × n
matrix. Then

det(MN) =
∑

I∈([ℓ]n )

[M ][n],I [N ]I,[n].

Proof. Let G be the directed graph with vertex set V and edge set E given by

V = {A1, . . . , An, B1, . . . , Bℓ, C1, . . . , Cn},
E = {(Ai, Bj) : i ∈ [n], j ∈ [ℓ]} ∪ {(Bi, Cj) : i ∈ [ℓ], j ∈ [n]}.

Define an edge weight w of G by

w(Ai, Bj) =Mi,j , w(Bi, Cj) = Ni,j .

Consider the n× n matrix L = (Li,j)i,j∈[n] whose (i, j)-entry is

Li,j =
∑

p∈P (Ai→Cj)

w(p).

Since the above sum is equal to

ℓ∑
k=1

w(Ai, Bk)w(Bk, Cj) =

ℓ∑
k=1

Mi,kNk,j = (MN)i,j ,

we have L = MN . Letting A = (A1, . . . , An) and C = (C1, . . . , Cn), the Lindström–Gessel–
Viennot lemma implies

detL =
∑

p∈NI(A→C)

sgn(p)w(p).

Observe that every p = (p1, . . . , pn) ∈ NI(A → C) is of the form pi = (Ai, BIτ(i)
, Cσ(i)) for

some I = {I1 < · · · < In} ∈
(
[ℓ]
n

)
and τ, σ ∈ S. In this case sgn(p) = sgn(σ) and we can write
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σ = ρτ for some ρ ∈ Sn, in fact, ρ = στ−1. Therefore

detL =
∑

I∈([ℓ]n )

∑
τ∈Sn

∑
σ∈Sn

sgn(σ)

n∏
i=1

w(Ai, BIτ(i)
, Cσ(i))

=
∑

I∈([ℓ]n )

∑
τ∈Sn

∑
ρ∈Sn

sgn(ρτ)

n∏
i=1

w(Ai, BIτ(i)
, Cρτ(i))

=
∑

I∈([ℓ]n )

∑
τ∈Sn

sgn(τ)

(
n∏

i=1

w(Ai, BIτ(i)
)

) ∑
ρ∈Sn

sgn(ρ)

(
n∏

i=1

w(BIτ(i)
, Cρτ(i))

)

=
∑

I∈([ℓ]n )

∑
τ∈Sn

sgn(τ)

(
n∏

i=1

w(Ai, BIτ(i)
)

) ∑
ρ∈Sn

sgn(ρ)

(
n∏

i=1

w(BIi , Cρ(i))

)

=
∑

I∈([ℓ]n )

∑
τ∈Sn

sgn(τ)

(
n∏

i=1

Mi,Iτ(i)

) ∑
ρ∈Sn

sgn(ρ)

(
n∏

i=1

NIi,ρ(i)

)

=
∑

I∈([ℓ]n )

[M ][n],I [N ]I,[n].

Since L =MN , the proof is completed.

7.3 Hankel determinants of moments

In this section we compute the Hankel determinants of moments using the Lindström–Gessel–
Viennot lemma.

As usual let {Pn(x)}n≥0 be a monic OPS satisfying

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x),

and let µn be the nth moment.

Definition 7.3.1. The (infinite) Hankel matrix H of the sequence {µn}n≥0 is defined by

H = (µi+j)
∞
i,j=0 .

The Hankel determinant ∆n is defined by

∆n = [H]{0,1,...,n},{0,1,...,n} = det (µi+j)
n
i,j=0 = det


µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn µn+1 · · · µ2n

 .

We will use the convention that the determinant of an empty matrix is 1. For example, ∆n = 1
for n < 0.

Note that µi+j is the generating function for Motzkin paths of length i+ j with starting and
ending heights 0. Let A = (A0, . . . , An) and B = (B0, . . . ,n ), where Ai = (−i, 0) and Bi = (i, 0).
Then

µi+j =
∑

p∈Motz(Ai→Bj)

wt(p).

Therefore, by Theorem 7.2.3,

∆n = det (µi+j)
n
i,j=0 =

∑
p∈NI(A→B)

sgn(p) wt(p).
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Figure 7.5: The unique nonintersecting (n+ 1)-path in NI(A → B) for the case n = 3.
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Figure 7.6: A nonintersecting (n+ 1)-path in NI(A → B′) for the case n = 4.

But, NI(A → B) has a unique (n+1)-path p = (p0, . . . , pn) as shown in Figure 7.5. Observe that
wt(p) = λn1λ

n−1
2 · · ·λ1n. This shows the following theorem.

Theorem 7.3.2. We have
∆n = λn1λ

n−1
2 · · ·λ1n.

Now let’s consider the following minor of the Hankel matrix:

∆′
n := [H]{0,1,...,n},{0,1,...,n−1,n+1} = det(Mi,j)

n
i,j=0,

where Mi,j = µi+j if j < n and Mi,n = µi+n+1. Let A = (A0, . . . , An) and B′ = (B0, . . . , Bn),
where Ai = (−i, 0) and Bi = (i+ δi,n, 0). Then by the Lindström–Gessel–Viennot lemma,

∆′
n =

∑
p∈NI(A→B′)

sgn(p) wt(p).

Suppose p = (p0, . . . , pn) ∈ NI(A → B′). Then p0, . . . , pn−1 are fixed as in the previous case.
Moreover, the first n steps of pn must be all up steps. Since pn is a Motzkin path of length 2n+1,
the remaining steps are n down steps and one horizontal step. Thus wt(pn) = λ1 · · ·λnbk for some
0 ≤ k ≤ n and pn is determined by the number k. See Figure 7.6. This shows the following
theorem.

Theorem 7.3.3. We have

∆′
n = λn1λ

n−1
2 · · ·λ1n(b0 + · · ·+ bn) = ∆n(b0 + · · ·+ bn).

Using Theorem 7.3.2 and Theorem 7.3.3 we can express λn and bn using µn’s as follows.
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Corollary 7.3.4. For n ≥ 1, we have

λn =
∆n∆n−2

∆2
n−1

,

bn =
∆′

n

∆n
−

∆′
n−1

∆n−1
,

and b0 = ∆′
0/∆0.

Proof. By Theorem 7.3.2, λ1 · · ·λn = ∆n/∆n−1. Thus

λn =
∆n

∆n−1
·
(
∆n−1

∆n−2

)−1

=
∆n∆n−2

∆2
n−1

.

Similarly, by Theorem 7.3.3, b0 + · · ·+ bn = ∆′
n/∆n. Thus

bn =
∆′

n

∆n
−

∆′
n−1

∆n−1
.

Corollary 7.3.5. Let {µn}n≥0 be a sequence of numbers. There is an OPS with moments µn if
and only if ∆n ̸= 0 for all n ≥ 0.

Proof. We know that {Pn(x)}n≥0 is an OPS if and only if it satisfies a 3-term recurrence relation

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x) (7.3.1)

with λn ̸= 0. Thus, if {Pn(x)}n≥0 is an OPS, then by Theorem 7.3.2, ∆n ̸= 0.
Conversely, if ∆n ̸= 0, then we can construct λn and bn using Corollary 7.3.4. By the con-

struction, λn and bn are the sequences which give µn =
∑

p∈Motzn
wt(p). Hence, if we define

{Pn(x)}n≥0 by (7.3.1), then it is an OPS with moments µn.

For the rest of this section, we consider the case bn = 0. Recall that µ2n+1 = 0 for all n ≥ 0
if and only if bn = 0 for all n ≥ 0. In this case there is a correspondence between {µ2n}n≥0 and
{λn}n≥0. For example,

∆3 = det


µ0 µ1 µ2 µ3

µ1 µ2 µ3 µ4

µ2 µ3 µ4 µ5

µ3 µ4 µ5 µ6

 = det


µ0 0 µ2 0
0 µ2 0 µ4

µ2 0 µ4 0
0 µ4 0 µ6

 = det

(
µ0 µ2

µ2 µ4

)
det

(
µ2 µ4

µ4 µ6

)
,

∆4 = det


µ0 µ1 µ2 µ3 µ4

µ1 µ2 µ3 µ4 µ5

µ2 µ3 µ4 µ5 µ6

µ3 µ4 µ5 µ6 µ7

µ4 µ5 µ6 µ7 µ8

 = det


µ0 0 µ2 0 µ4

0 µ2 0 µ4 0
µ2 0 µ4 0 µ6

0 µ4 0 µ6 0
µ4 0 µ6 0 µ8


= det

µ0 µ2 µ4

µ2 µ4 µ6

µ4 µ6 µ8

 det

(
µ2 µ4

µ4 µ6

)
.

In general, we have

∆2n = ∆n(2)∆
+
n−1(2), (7.3.2)

∆2n+1 = ∆n(2)∆
+
n (2), (7.3.3)

where

∆n(2) = det (µ2i+2j)
n
i,j=0 ,

∆+
n (2) = det (µ2i+2j+2)

n
i,j=0 ,
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A0 = B0A1A2A3 B1 B2 B3
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λ3 λ3
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λ4 λ4
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λ6

Figure 7.7: The unique nonintersecting (n+ 1)-path in NI(A → B) for the case n = 3.

Since bn = 0, we have

µ2n =
∑

p∈Dyck2n

wt(p).

Let A = (A0, . . . , An) and B = (B0, . . . , Bn), where Ai = (−2i, 0) and Bi = (2i, 0). Then

µ2i+2j =
∑

p∈Dyck(Ai→Bj)

wt(p).

Thus, by the Lindström–Gessel–Viennot lemma,

∆n(2) =
∑

p∈NI(A→B)

sgn(p) wt(p).

There is only one element in NI(A → B) as shown in Figure 7.7. This gives the following theorem.

Theorem 7.3.6. If bn = 0 for all n ≥ 0, we have

∆n(2) = (λ1λ2)
n(λ3λ4)

n−1 · · · (λ2n−1λ2n)
1.

Now let A = (A0, . . . , An) and B+ = (B+
0 , . . . , B

+
n ), where Ai = (−2i, 0) and B+

i = (2i+2, 0).
Then

µ2i+2j =
∑

p∈Dyck(Ai→Bj)

wt(p).

Thus, by the Lindström–Gessel–Viennot lemma,

∆n(2) =
∑

p∈NI(A→B)

sgn(p) wt(p).

There is only one element in NI(A → B) as shown in Figure 7.7. This gives the following theorem.

Theorem 7.3.7. If bn = 0 for all n ≥ 0, we have

∆+
n (2) = λn+1

1 (λ2λ3)
n(λ4λ5)

n−1 · · · (λ2nλ2n+1)
1.
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Figure 7.8: The unique nonintersecting (n+ 1)-path in NI(A → B+) for the case n = 2.

Corollary 7.3.8. If bn = 0 for all n ≥ 0, we have

λ2n =
∆n(2)∆

+
n−2(2)

∆n−1(2)∆
+
n−1(2)

,

λ2n+1 =
∆+

n (2)∆n−1(2)

∆n(2)∆
+
n−1(2)

.

Proof. By Theorem 7.3.6 and 7.3.7,

∆+
n (2)

∆n(2)
= λ1λ3 · · ·λ2n+1,

∆n(2)

∆+
n−1(2)

= λ2λ4 · · ·λ2n.

Thus

λ2n+1 =
∆+

n (2)

∆n(2)

(
∆+

n−1(2)

∆n−1(2)

)−1

=
∆+

n (2)∆n−1(2)

∆n(2)∆
+
n−1(2)

,

λ2n =
∆n(2)

∆+
n−1(2)

(
∆n−1(2)

∆+
n−2(2)

)−1

=
∆n(2)∆

+
n−2(2)

∆n−1(2)∆
+
n−1(2)

.

7.4 Another duality between moments and coefficients

Recall that we proved a duality between mixed moments µn,k and coefficients νn,k. In this section
we will prove the following theorem, which gives another type of duality between moments and
coefficients.

Theorem 7.4.1. Let L be a linear functional with moment sequence {µn} with ∆n ̸= 0 for all
n ≥ 0. Then the monic OPS for L is given by

Pn(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ1 µ2 · · · µn+1

...
...

. . .
...

µn−1 µn · · · µ2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
.

Let us write

Pn(x) =

n∑
k=0

νn,kx
k.
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A5 A4 A3 A2 A1 A0 = B0 B1 B2 B3 B4 B5

Figure 7.9: A nonintersecting (n+ 1)-path in NI(A → B(k)) for the case n = 6 and k = 2.

Then the theorem above is equivalent to

νn,k =
(−1)n−k

∆n−1
[H]{0,...,n−1},{0,...,k−1,k+1,...,n}. (7.4.1)

Thus we need to compute

[H]{0,...,n−1},{0,...,k−1,k+1,...,n} = det(µi+j+χ(j≥k))
n−1
i,j=0,

where, for a statement P , χ(P ) = 1 if P is true and χ(P ) = 0 otherwise. Let A = (A0, . . . , An−1)
and B(k) = (B0, . . . , Bn−1), where

Ai = (−i, 0), Bi = (i+ χ(i ≥ k), 0).

Then by the Lindström–Gessel–Viennot lemma,

[H]{0,...,n−1},{0,...,k−1,k+1,...,n} =
∑

p∈NI(A→B(k))

sgn(p) wt(p). (7.4.2)

Now we investigate a nonintersecting (n + 1)-path p = (p0, . . . , pn−1) ∈ NI(A → B(k)), see
Figure 7.9 for an example. For 1 ≤ i ≤ n− 1, let Ri be the region defined by

Ri = {(x, y) ∈ R2 : x > 0, i− 1 < y < i}.

Then we have the following observations. See Figure 7.10.

(1) The first i steps of pi are up steps. Hence pi visits (0, i).

(2) There are n− i paths having at least one step in Ri, namely, pi, pi+1, . . . , pn−1.

(3) If d and u are the number of down steps and up steps in Ri, respectively, then d−u = n− i.
This is because each of pi, pi+1, . . . , pn−1 must enter the line y = i and exit the line y = i−1,
contributing 1 to the number d− u.

(4) In Ri, every down step is of the form (a, i) → (a− 1, i− 1) for some 0 ≤ a ≤ n− i. So there
are n− i+ 1 possible down steps in Ri.

(5) In Ri, there is only one “missing” down step or there is only one figure “X”, but not both.
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Figure 7.10: The missing down steps and the figure “X” in Figure 7.9 are drawn with red dotted
lined.

(6) In R1, we have exactly one of the following:

• (k − 1, 1) → (k, 0) is missing;

• (k, 1) → (k + 1, 0) is missing;

• (k, 1) → (k + 1, 0) and (k, 0) → (k + 1, 1) form a figure “X”.

To see this, observe that if (k − 1, 1) → (k, 0) presents, then the path containing this down
step must have a horizontal step (k, 0) → (k+1, 0) or an up step (k, 0) → (k+1, 1) because
(k, 0) cannot be an ending point. Therefore in this case either (k, 1) → (k + 1, 0) is missing
or (k, 1) → (k + 1, 0) and (k, 0) → (k + 1, 1) form a figure “X”.

(7) If (a, i) → (a+ 1, i− 1) is a missing down step, then exactly one of the following holds:

• (a− 1, i+ 1) → (a, i) is missing;

• (a, i+1) → (a+1, i) is missing. In this case, there is a path pj containing a horizontal
step (a, i) → (a+ 1, i);

• (a, i+ 1) → (a+ 1, i) and (a, i) → (a+ 1, i+ 1) form a figure “X”.

(8) If (a, i) → (a+1, i−1) forms a figure “X”, both (a, i+1) → (a+1, i) and (a, i−1) → (a+1, i−2)
are missing.

(9) Construct a path p′ from C := (k + 1/2,−1/2) to D := (1/2, n − 1/2) by connecting
the midpoints of all the missing down steps as shown in Figure 7.11. Then p′ consists of
northeast steps (−1, 1), north steps (0, 1), and double north steps (0, 2). This can be seen
by the observations (6), (7), and (8).

(10) The map p 7→ p′ is a bijection from NI(A → B(k)) to all such paths p′ : C → D.

Lemma 7.4.2. Let p′ be the path obtained from p = (p0, . . . , pn−1) ∈ NI(A → B(k)) as above.
Define w(p′) to be the product of bi for each north step intersecting y = i and −λi for each double
north step intersecting y = i and y = i− 1. Then

sgn(p) wt(p) = w(p′)∆n−1.
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Figure 7.11: The path p′ from C = (k+ 1/2,−1/2) to D = (1/2, n− 1/2) obtained by connecting
the midpoints of the missing down steps in Figure 7.10.

Proof. By observation (7), every north step intersecting y = i corresponds to a horizontal step of
height i, which has weight bi. By observation (5), the product of the weights of all down steps in
p is

λn−1
1 λn−2

2 · · ·λ1n−1X1 · · ·Xn−1 = ∆n−1X1 · · ·Xn−1,

where Xi = λi if there is a figure “X” in Ri and Xi = 1 otherwise. Moreover, every figure “X”
contributes −1 to the sign of p. Combinining these facts, we obtain the lemma.

Lemma 7.4.3. We have ∑
p′:C→D

w(p′) = (−1)n−kνn,k.

Proof. A path p′ : C → D is essentially the same as a Favard tiling, say T . Since p′ : C → D has
n − k northeast steps, T has k red monominos. We need to check their signs. Suppose p′ has r
north steps and s double north steps. Then r + 2s+ k = n since the height difference between C
and D is n. The sign of p′ is (−1)s while the sign of T is (−1)r+s. Hence the sign difference of p′

and T is (−1)r = (−1)n−2s−k = (−1)n−k. Thus we have∑
p′:C→D

w(p′) =
∑

T∈FTn,k

(−1)n−kw(T ) = (−1)n−kνn,k,

as desired.

We are now ready to prove Theorem 7.4.1.

Proof of Theorem 7.4.1. By Lemma 7.4.2, Lemma 7.4.3, and (7.4.2),

νn,k = (−1)n−k
∑

p′:C→D

w(p′) = (−1)n−k
∑

p∈NI(A→B(k))

sgn(p) wt(p)

∆n−1

=
(−1)n−k

∆n−1
[H]{0,...,n−1},{0,...,k−1,k+1,...,n},

which is equivalent to the statement of the theorem.
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Theorem 7.4.1 has an interesting connection with the following well-known lemma. (In fact,
we only need the case that |I| = |J | = 1, which is equivalent to the inverse matrix formula using
cofactors.)

Lemma 7.4.4 (Inverse minor formula). Suppose that A = (Ai,j)
n
i,j=0 is an invertible matrix. For

subsets I, J ⊆ {0, . . . , n} of the same cardinality, we have[
A−1

]
I,J

= (−1)∥I∥+∥J∥ [A]J′,I′

detA
,

where ∥I∥ =
∑

i∈I i and I
′ = {0, . . . , n} \ I.

Let A = (µi+j)
n
i,j=0. Note that

detA = ∆n = ∆n−1λ1 · · ·λn.

Thus Theorem 7.4.1 can be restated as

νn,k =
(−1)n−kλ1 · · ·λn

detA
[A]{0,...,n}\{n},{0,...,n}\{k}.

By Lemma 7.4.4 with I = {k} and J = {n}, we have

νn,k = λ1 · · ·λn · (−1)∥I∥+∥J∥ [A]J′,I′

detA
= λ1 · · ·λn[A−1]I,J = λ1 · · ·λn(A−1)k,n.

This implies that νn,0, νn,1, . . . , νn,n are the entries of the last column of the matrix A−1. Equiv-
alently, for 0 ≤ i ≤ n, we have

n∑
k=0

µi+kνn,k = δn,iλ1 · · ·λn.

Note that this is equivalent to the orthogonality relation

L(xiPn(x)) = δn,iλ1 · · ·λn.

The above arguments show that Theorem 7.4.1 is equivalent to a formula for (A−1)k,n for
0 ≤ k ≤ n. Therefore it is natural to ask whether there is a similar formula for (A−1)r,s for
arbitrary 0 ≤ r, s ≤ n.

Theorem 7.4.5. Let A = (µi+j)
n
i,j=0. Then

(A−1)r,s =
n∑

k=0

νk,rνk,s
λ1 · · ·λk

.

Proof 1. Let I = {r} and J = {s}. Then

(A−1)r,s = (−1)r+s [A]J′,I′

detA
. (7.4.3)

Let A(s) = (A0, . . . , An−1) and B(r) = (B0, . . . , Bn−1), where

Ai = (−i− χ(i ≥ s), 0), Bi = (i+ χ(i ≥ r), 0).

Then by the Lindström–Gessel–Viennot lemma,

[A]J′,I′ =
∑

p∈NI(A(s)→B(r))

sgn(p) wt(p).

Consider p = (p0, . . . , pn−1) ∈ NI(A(s) → B(r)). Then these paths must visit (0, i) for all
0 ≤ i ≤ n with i ̸= k for some k such that max(r, s) ≤ k ≤ n. By the same arguments above, we
have

[A]J′,I′ =

n∑
k=max(r,s)

∆n

λ1 · · ·λk
(−1)k−rνk,r(−1)k−sνk,s. (7.4.4)

For example, see Figure 7.12. By (7.4.3) and (7.4.4) we obtain the theorem.
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0−s r

k

n−n

Figure 7.12: A nonintersecting (n+1)-path in NI(A(s) → B(r)). The red (resp. blue) path on the
left contributes to (−1)k−sνk,s (resp. (−1)k−rνk,r).

Proof 2. We can also prove this theorem using orthogonality. Given, r, s, it suffces to prove the
validity of

δr,s =

n∑
k=0

µr+k(A
−1)k,s =

n∑
k=0

µr+k

n∑
ℓ=0

νℓ,kνℓ,s
λ1 · · ·λℓ

.

We can write the right-hand side as

L

(
n∑

k=0

xr+k
n∑

ℓ=0

νℓ,kνℓ,s
λ1 · · ·λℓ

)
= L

(
xr

n∑
ℓ=0

νℓ,s
λ1 · · ·λℓ

n∑
k=0

νℓ,kx
k

)

= L

(
r∑

a=0

µr,aPa(x)

n∑
ℓ=0

νℓ,s
λ1 · · ·λℓ

Pℓ(x)

)

=

n∑
ℓ=0

µr,ℓνℓ,s = δr,s.

Note that Theorem 7.4.5 is equivalent to the following UDL decomposition of the inverse of a
finite Hankel matrix:(

(µi+j)
n
i,j=0

)−1

=
(
(νi,j)

n
i,j=0

)T
D(λ−1

1 , λ−1
1 λ−1

2 , . . . , λ−1
1 · · ·λ−1

n ) (νi,j)
n
i,j=0 , (7.4.5)

where D(a0, . . . , an) is the diagonal matrix with diagonal entries ai’s. Since (νi,j)
−1 = (µi,j),

taking the inverses of both sides of (7.4.5), we get the following LDU decomposition of a finite
Hankel matrix:

(µi+j)
n
i,j=0 = (µi,j)

n
i,j=0D(λ1, λ1λ2, . . . , λ1 · · ·λn)

(
(µi,j)

n
i,j=0

)T
. (7.4.6)

This is equivalent to

µr+s =

n∑
k=0

µr,kλ1 · · ·λkµs,k.

This can also be proved combinatorially using Theorem 4.3.3 as follows:

n∑
k=0

µr,kλ1 · · ·λkµs,k =

n∑
k=0

µr,0,kλ1 · · ·λkµs,0,k =

n∑
k=0

µr,0,kµs,k,0 = µr+s.



Chapter 8

Continued fractions

Mathematicians introduced orthogonal polynomials in order to study continued fractions. In this
chapter we first review basics of continued fractions. We then investigate the close connection
with continued fractions and orthogonal polynomials.

8.1 Basics of continued fractions

Let’s begin with the following example.

Example 8.1.1. What is the following value?

1

1 +
1

1 +
1

. . .

To solve this, let x be this number. Then we must have

x =
1

1 + x
,

or equivalently x2 + x− 1 = 0. Thus x = −1±
√
5

2 . Since x must be positive, we obtain x =
√
5−1
2 .

If you believe that the above solution is correct, let’s look at another example.

Example 8.1.2. What is the following value?

1

1−
3

1−
3

. . .

As before, let x be this number. Then we must have

x =
1

1− 3x
,

or equivalently 3x2 − x + 1 = 0. Thus x = −1±
√
11i

2 . However, since x must be real, there is no
solution.

What’s the difference between the two examples above? To answer this question, we need to
be precise on what a continued fraction actually means.

78



CHAPTER 8. CONTINUED FRACTIONS 79

Definition 8.1.3. A continued fraction is an expression of the form

β0 +
α1

β1 +
α2

β2 +
α3

. . .

,

for some sequences {αn}n≥1 and {βn}n≥0. The n-th convergent is

Cn = β0 +
α1

β1 +
α2

β2 + .. . +
αn

βn

We write

β0 +
α1

β1 +
α2

β2 +
α3

. . .

= L

to mean
lim
n→∞

Cn = L.

Note that the argument in Example 8.1.1 is not complete because it did not check whether the
sequence of nth convergents actually converges. Indeed, this sequence converges, so the answer
was correct. However, the sequence of nth convergents does not converge in Example 8.1.2, hence
we arrived at the strange situation that the continued fraction is a complex number.

8.2 Flajolet’s combinatorial theory of continued fractions

In this section we study Flajolet’s combinatorial theory of continued fractions. Throughout this
section a “Motzkin path” means a Motzkin path whose starting and endig height are both 0.

Fix sequences b = (b0, b1, . . . ) and λ = (λ1, λ2, . . . ). We define

µn(b,λ) =
∑

π∈Motzn

wt(π; b,λ).

Here wt(π; b,λ) is the usual weight of a Motzkin path π, i.e., the product of bi for each horizontal
step with starting height i and bi for each down step with starting height i.

Let
F (x; b,λ) =

∑
n≥0

µn(b,λ)x
n.

Observe that every Motzkin path π is one of the following forms:

(1) π is an empty path.

(2) π = Hπ′ for some Motzkin path π′,

(3) π = Uπ′Dπ′′ for some Motzkin paths π′ and π′′.

Let δ be the operator that removes the first element of a sequence, namely, δb = (b1, b2, . . . )
and δλ = (λ2, λ3, . . . ). Then in the second case π = Hπ′, we have

wt(π; b,λ) = b0 wt(π
′; b,λ),
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and in the third case π = Uπ′Dπ′′, we have

wt(π; b,λ) = λ1 wt(π
′; δb, δλ) wt(π′′; b,λ).

Therefore, we have

F (x; b,λ) = 1 + b0xF (x; b,λ) + λ1x
2F (x; δb, δλ)F (x; b,λ),

or equivalently,

F (x; b,λ) =
1

1− b0x− λ1x2F (x; δb, δλ)
.

Iterating this process, we obtain

F (x; b,λ) =
1

1− b0x−
λ1x

2

1− b1x− λ2x2F (x; δb, δλ)

= · · · =
1

1− b0x−
λ1x

2

1− b1x−
λ2x

2

. . .

. (8.2.1)

However, we must make this argument rigorous by showing that the above continued fraction
converges. Since we are working with formal power series we need to define convergence of a
sequence of formal power series.

Definition 8.2.1. Let {Fn(x)}n≥0 be a sequence of formal power series. We write

lim
n→∞

Fn(x) = F (x)

if for every m ≥ 0, there is N > 0 such that for all n > N ,

[xm]Fn(x) = [xm]F (x),

where [xm]F (x) is the coefficient of xm in F (x). In other words, for any m ≥ 0, the coefficient of
xm in Fn(x), n ≥ 0, eventually becomes the coefficient of xm in F (x).

Example 8.2.2. Let F (x) = 1+x+x2+· · · and Fk(x) = 1+x+x2+· · ·+xk. Then limk→∞ Fk(x) =
F (x).

To prove that Equation (8.2.1) converges we need to investigate its nth convergents. To do
this we introduce the following definition. Let Motz≤k

n denote the set of Motzkin paths in Motzn
that stays weakly below the height y = k. We also define

µ≤k
n (b,λ) =

∑
π∈Motz

≤k
n

wt(π; b,λ).

Theorem 8.2.3. For any k ≥ 0, we have

∑
n≥0

µ≤k
n (b,λ)xn =

1

1− b0x−
λ1x

2

1− b1x−
λ2x

2

1− b2x− . . . −
λkx

2

1− bkx

.
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Proof. We use induction on k. If k = 0, then the identity we need to prove is∑
n≥0

µ≤0
n (b,λ)xn =

1

1− b0x
.

Since there is only one Motzkin path in Motz≤0
n , which consists of n horizontal steps, we have

µ≤0
n (b,λ) = bn0 .
Now let k ≥ 1 and suppose the theorem holds for k− 1. Then we can apply the decomposition

of a Motzkin path π into ∅, π = Hπ′, or π = Uπ′Dπ′′. Writing

Fk(x; b,λ) =
∑
n≥0

µ≤k
n (b,λ)xn,

the decomposition shows that

Fk(x; b,λ) = 1 + b0xFk(x; b,λ) + λ1x
2Fk−1(x; δb, δλ)Fk(x; b,λ).

Therefore

Fk(x; b,λ) =
1

1− b0x− λ1x2Fk−1(x; δb, δλ)
.

Then by the induction hypothesis, we obtain that the theorem holds for k. Hence, by induction,
the proof is completed.

Now we can give a rigorous proof of Equation (8.2.1).

Corollary 8.2.4. We have∑
n≥0

µn(b,λ)x
n =

1

1− b0x−
λ1x

2

1− b1x−
λ2x

2

. . .

. (8.2.2)

Proof. By Theorem 8.2.3, the kth convergent of the continued fraction is
∑

n≥0 µ
≤k
n (b,λ)xn.

Therefore it suffices to show that

lim
k→∞

µ≤k
n (b,λ) = µn(b,λ). (8.2.3)

Observe that any Motzkin path π ∈ Motzn can have height at most ⌊n/2⌋. Hence, if k > ⌊n/2⌋,
then Motz≤k

n = Motzn. This shows (8.2.3) and we obtain the result.

8.3 Continued fractions and orthogonal polynomials

In this section we study the connection between continued fractions and orthogonal polynomials.
More precisely, we will show that the kth convergent of the continued fraction in (8.2.2) can be
written in terms of orthogonal polynomials.

Let {Pn(x; b,λ)}n≥0 be the monic OPS given by

Pn+1(x; b,λ) = (x− bn)Pn(x; b,λ)− λnPn−1(x; b,λ). (8.3.1)

For simplicity, we will write δPn(x; b,λ) = Pn(x; δb, δλ). Note that µn(b,λ) is the nth moment
of this OPS.

The inverted polynomial P ∗
n(x; b,λ) of Pn(x; b,λ) is defined by

P ∗
n(x; b,λ) = xnPn(x

−1; b,λ).

Note that (8.3.1) implies

P ∗
n+1(x; b,λ) = (1− bnx)P

∗
n(x; b,λ)− λnx

2P ∗
n−1(x; b,λ). (8.3.2)

The goal of this section is to prove the following theorem.
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Theorem 8.3.1. We have ∑
n≥0

µ≤k
n (b,λ)xn =

δP ∗
k (x; b,λ)

P ∗
k+1(x; b,λ)

.

To prove this theorem we will use a continued fraction technique due to John Wallis (1616 –
1703). Let {αn}n≥1 and {βn}n≥0 be fixed sequences and consider

Cn = β0 +
α1

β1 +
α2

β2 + .. . +
αn

βn

We can express Cn and a rational function

Cn =
An

Bn
. (8.3.3)

For example,

C0 = β0 =
β0
1

=
A0

B0
, C1 = β0 +

α1

β1
=
β1β0 + α1

β1
=
A1

B1
. (8.3.4)

The following lemma gives a solution to (8.3.3).

Lemma 8.3.2 (Wallis’ method). Suppose that {An}n≥0 and {Bn}n≥0 are given by A0 = β0,
B0 = 1, and for n ≥ 1,

An = βnAn−1 + αnAn−2,

Bn = βnBn−1 + αnBn−2,

where A−1 = 1 and B−1 = 0. Then

An

Bn
= β0 +

α1

β1 +
α2

β2 + . . . +
αn

βn

. (8.3.5)

Proof. We use induction on n. By (8.3.4), the equation (8.3.5) is true for n = 0, 1. Suppose that
the lemma is true for n ≥ 1 and consider the case n + 1. Observe that the (n + 1)st convergent
can be written as

Cn+1 = β0 +
α1

β1 +
α2

β2 + .. . +
αn

βn +
αn+1

βn+1

= β0 +
α1

β1 +
α2

β2 + .. . +
αnβn+1

βnβn+1 + αn+1

,

which is exactly the nth convergent with the following substitutions:

αn 7→ αnβn+1, βn 7→ βnβn+1 + αn+1. (8.3.6)

Therefore, we have

Cn+1 =
A∗

n

B∗
n

,
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where A∗
n (resp. B∗

n) is the same as An (resp. Bn) with the substitutions in (8.3.6). Thus by the
induction hypothesis,

A∗
n = (βnβn+1 + αn+1)An−1 + (αnβn+1)An−2,

= βn+1(βnAn−1 + αnAn−2) + αn+1An−1,

= βn+1An + αn+1An−1 = An+1,

and the same computation also shows that B∗
n = Bn+1. This shows that (8.3.5) also holds for

n+ 1, completing the proof.

Now we can prove Theorem 8.3.1.

Proof of Theorem 8.3.1. By Lemma 8.3.2 with αn = −λnx2 and βn = 1− bnx, we have

Ak

Bk
= 1− b0x−

λ1x
2

1− b1x−
λ2x

2

1− b2x− . . . −
λkx

2

1− bkx

,

where An and Bn are given by A−1 = 1, A0 = 1− b0x, B−1 = 0, B0 = 1, and for n ≥ 1,

An = (1− bnx)An−1 + λnx
2An−2,

Bn = (1− bnx)Bn−1 + λnx
2Bn−2.

By (8.3.2), we obtain An = P ∗
n+1(x; b,λ). Replacing n by n− 1 and taking δ in (8.3.2) we obtain

δP ∗
n(x; b,λ) = (1− bnx)δP

∗
n−1(x; b,λ)− λnx

2δP ∗
n−2(x; b,λ).

This shows that Bn = δP ∗
n(x; b,λ). Combining these results with Theorem 8.2.3, we obtain∑

n≥0

µ≤k
n (b,λ)xn =

1

1− b0x−
λ1x

2

1− b1x−
λ2x

2

1− b2x− . . . −
λkx

2

1− bkx

=

(
Ak

Bk

)−1

=
δP ∗

k (x; b,λ)

P ∗
k+1(x; b,λ)

.

We end this section with a connection between Theorem 8.2.3 and Padé approximants.

Let P (x) and Q(x) be polynomials of degree p and q, respectively. We say that P (x)
Q(x) is a Padé

approximant of type (p, q) for F (x) if

F (x)− P (x)

Q(x)
=

∑
n≥p+q+1

anx
n.

Often times Padé approximants are better than Taylor polynomials since rational functions can
handle poles. It is well known that if a power series has a Padé approximant of type (p, q), then
it is unique.

Corollary 8.3.3. Let

F (x) =
∑
n≥0

µn(b,λ)x
n.

Then for a nonnegative integer k,
δP ∗

k (x; b,λ)

P ∗
k+1(x; b,λ)

is the Padé approximant of type (k, k + 1) for F (x).
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Proof. We have ∑
n≥0

µ≤k
n (b,λ)xn =

δP ∗
k (x; b,λ)

P ∗
k+1(x; b,λ)

.

Observe that if
µn(b,λ) ̸= µ≤k

n (b,λ),

we must have n ≥ 2k + 2. Hence the lowest term of

F (x)− δP ∗
k (x; b,λ)

P ∗
k+1(x; b,λ)

=
∑
n≥0

(
µn(b,λ)− µ≤k

n (b,λ)
)
xn

has degree at least 2k + 2. This implies the statement.

8.4 Motzkin paths with fixed starting and ending heights

In this section we generalize Theorem 8.3.1 to Motzkin paths with bounded height and fixed
starting and ending heights. We begin with some definitions.

Let Motz≤k
n,r,s denote the set of Motzkin paths in Motzn,r,s = Motz((0, r) → (n, s)) that stay

weakly below the line y = k. We also define

µ≤k
n,r,s(b,λ) =

∑
π∈Motz

≤k
n,r,s

wt(π; b,λ).

Theorem 8.4.1. Let r, s, and k be integers with 0 ≤ r, s ≤ k. If r ≤ s, then∑
n≥0

µ≤k
n,r,s(b,λ)x

n = xs−r ·
P ∗
r (x; b,λ)δ

s+1P ∗
k−s(x; b,λ)

P ∗
k+1(x; b,λ)

.

If r > s, then ∑
n≥0

µ≤k
n,r,s(b,λ)x

n = λs+1 · · ·λrxr−s ·
P ∗
s (x; b,λ)δ

r+1P ∗
k−r(x; b,λ)

P ∗
k+1(x; b,λ)

.

It is possible to prove Theorem 8.4.1 using sign-reversing involutions as before. However, we
will not pursue in this direction. Instead we will give two alternative proofs: one using linear
algebra techniques and the other using combinatorial arguments. We first need to introduce some
definitions.

Let G = (V,E) be a directed graph on the vertex set V = [m]. Let w : E → K be an
edge-weight and let A = (ai,j)

m
i,j=1 be the adjacency matrix of this weighted graph G, that is,

ai,j = w(i→ j). Here, if there is no edge i→ j in G, we define ai,j = 0.
A path of length n from u to v is a sequence p = (u0, . . . , un) of vertices such that u0 = u,

un = v, and ui−1 → ui is an edge for all i = 1, . . . , n. The weight w(p) of p is defined to be the
product of the weight of each step:

w(p) = w(u0 → u1)w(u1 → u2) · · ·w(un−1 → un) = au0,u1
au1,u2

· · · aun−1,un
.

Let Pn(u→ v) denote the set of all paths of length n from u to v. We also define P (u→ v) to be
the set of all paths from u to v.

Lemma 8.4.2. For vertices r, s ∈ [m] and an integer n ≥ 0,∑
p∈Pn(r→s)

w(p) = (An)r,s.

Proof. This is immediate from the definition of the product of matrices.
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Proposition 8.4.3. Suppose that I −A is invertible. We have∑
p∈P (r→s)

w(p) =
(
(I −A)−1

)
r,s

=
(−1)r+s[I −A]{s}c,{r}c

det(I −A)
,

where I is the m×m identity matrix.

Proof. By Lemma 8.4.2, the left-hand side is equal to

∑
n≥0

 ∑
p∈Pn(r→s)

w(p)

 =
∑
n≥0

(An)r,s =

∑
n≥0

An


r,s

=
(
(I −A)−1

)
r,s
,

which proves the first equality. The second equality follows from the minor inverse formula
Lemma 7.4.4.

Now let us return to the following generating function that we need to compute:∑
n≥0

µ≤k
n,r,s(b,λ)x

n =
∑
n≥0

∑
π∈Motz

≤k
n,r,s

wt(π; b,λ)xn. (8.4.1)

Define a graph Gk on V = {0, 1, . . . , k} with edges (i, j) for all possible i, j ∈ V with |i− j| ≤ 1.
Define an edge-weight w on Gk by w(i, i+ 1) = x, w(i, i) = bix, and w(i, i− 1) = λix. Then the
adjacency matrix of Gk is the following tridiagonal matrix:

A =


b0x x 0

λ1x b1x
. . .

. . .
. . . x

0 λkx bkx

 .

Observe that every π ∈ Motz≤k
n,r,s can be considered as a path p of length n from r to s for the

graph Gk. In this case we have wt(π; b,λ)xn = w(p). Therefore we can rewrite (8.4.1) as∑
n≥0

µ≤k
n,r,s(b,λ)x

n =
∑
n≥0

∑
p∈Pn(r→s)

w(p) =
∑

p∈P (r→s)

w(p). (8.4.2)

Then, by Proposition 8.4.3,∑
n≥0

µ≤k
n,r,s(b,λ)x

n =
(−1)r+s[I −A]{s}c,{r}c

det(I −A)
. (8.4.3)

Now we need to compute the numerator and the denominator of the right-hand side of (8.4.3).

Lemma 8.4.4. We have
P ∗
k+1(x; b,λ) = det(I −A).

Proof. Let

Qk+1(x) = det(I −A) = det


1− xb0 −x 0

−xλ1 1− xb1
. . .

. . .
. . . −x

0 −xλk 1− xbk

 .

Expanding the determinant along the last row, we have

Qk+1(x) = (1− bkx)Qk(x)− λkx
2Qk−1(x).

This is the same recurrence for P ∗
n(x; b,λ) in (8.3.2). Since Q0(x) = 1 = P ∗

0 (x) and Q1(x) =
1− xb0 = P ∗

1 (x), we obtain the lemma.
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Figure 8.1: The minor [I − A]{s}c,{r}c is the product of the determinants of three block matrices
B1, B2, and B3. The left diagram illustrates the case r ≤ s and the right diagram illustrates the
case r > s.

Lemma 8.4.5. We have

(−1)r+s[I −A]{s}c,{r}c =

{
xs−rP ∗

r (x; b,λ)δ
s+1P ∗

k−s(x; b,λ) if r ≤ s,

λs+1 · · ·λrxr−sP ∗
s (x; b,λ)δ

r+1P ∗
k−r(x; b,λ) if r > s.

Proof. Since I − A is tridiagonal, we can decompose [I − A]{s}c,{r}c = detB1 detB2 detB3 as
shown in Figure 8.1. Suppose that r ≤ s. Then, by 8.4.4, we have detB1 = P ∗

r (x; b,λ) and
detB3 = δs+1P ∗

k−s(x; b,λ). Since B2 is lower trianular with diagonal entries x, . . . , x, we have
detB2 = (−1)s−rxs−r.

Similarly, if r > s, we have detB1 = P ∗
s (x; b,λ) and detB3 = δr+1P ∗

k−r(x; b,λ). Since B2

is upper trianular with diagonal entries λs+1, . . . , λr, we have detB2 = (−1)r−sλs+1 · · ·λrxr−s.
This proves the lemma.

By (8.4.3), Lemma 8.4.4 and Lemma 8.4.5, we obtain Theorem 8.4.1.

8.5 A combinatorial proof using disjoint paths and cycles

In this section we give another proof of Theorem 8.4.1 using self-avoiding paths. As in the previous
section let G = (V,E) be a directed graph on the vertex set V = [m] with edge-weight w : E → K
and adjacency matrix A = (ai,j)

m
i,j=1.

A cycle is a path p = (u0, . . . , un) such that un = u0. We identify a cycle p = (u0, . . . , un)
with any of its cyclic shift p = (uj , . . . , un, u0, . . . , uj). We say that a path p = (u0, . . . , un) is self-
avoiding if ui ̸= uj for all i ̸= j with a possible exception u0 = un. A collection {p1, p2, . . . , pt}
of paths is said to be disjoint if the following conditions hold:

• pi is self-avoiding for all 1 ≤ i ≤ t,

• pi and pj have no common vertices for all 1 ≤ i ̸= j ≤ t.

We define
Γ =

∑
{C1,C2,...,Ct}∈C

(−1)tw(C1) · · ·w(Ct), (8.5.1)

where C is the set of all disjoint collections {C1, C2, . . . , Ct} of cycles in G. For 1 ≤ i, j ≤ m, we
define

Γi,j =
∑

(p,{C1,C2,...,Ct})∈Ci,j

w(p) · (−1)tw(C1) · · ·w(Ct), (8.5.2)

where Ci,j is the set of all pairs (p, {C1, C2, . . . , Ct}) of a path p ∈ P (i → j) and a collection
{C1, C2, . . . , Ct} of cycles in G such that {p, C1, C2, . . . , Ct} is disjoint.
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Proposition 8.5.1. We have ∑
p∈P (r→s)

w(p) =
Γr,s

Γ
.

Proof. We will prove the equivalent statement

Γ
∑

p∈P (r→s)

w(p) = Γr,s.

The left-hand side can be written as∑
(p,{C1,C2,...,Ct})∈X

w(p) · (−1)tw(C1) · · ·w(Ct),

where X is the set of pairs (p, {C1, C2, . . . , Ct}) of any path p ∈ P (r → s) and any disjoint
collection {C1, C2, . . . , Ct} of cycles in G. By (8.5.2), it suffices to find a sign-reversing weight-
preserving involution ϕ : X → X with fixed point set Cr,s.

Consider (p, {C1, C2, . . . , Ct}) ∈ X. If (p, {C1, C2, . . . , Ct}) ∈ Cr,s, then define ϕ(p, {C1, C2, . . . , Ct}) =
(p, {C1, C2, . . . , Ct}). Now suppose that (p, {C1, C2, . . . , Ct}) ̸∈ Cr,s and let p = (u0, u1, . . . , un).
Then we can find the smallest integer j such that ui = uj for some 0 ≤ i < j or uj is contained in
Cl for some 1 ≤ l ≤ t.

Case 1: ui = uj for some 0 ≤ i < j. Then we define

ϕ(p, {C1, C2, . . . , Ct}) = (p′, {C0, C1, C2, . . . , Ct}),

where p′ = (u0, . . . , ui, uj+1, . . . , un) and C0 = (ui, . . . , uj).

Case 2: uj is contained in a cycle in {C1, C2, . . . , Ct}. Since the ordering of the cycles does not
mattter, we may assume that uj ∈ C1. Let C1 = (v0, v1, . . . , vq), where v0 = vq = uj . Then
we define

ϕ(p, {C1, C2, . . . , Ct}) = (p′, {C2, . . . , Ct}),
where p′ = (u0, . . . , uj , v1, . . . , vq, uj+1, . . . , un).

Note that these two cases cannot happen at the same time because then the integer i with 0 ≤ i < j
would have been chosen instead of j.

Since ϕ increases or decreases the number of cycles by 1 and does not change the set of edges,
it is a desired sign-reversing weight-preserving involution. This completes the proof.

Now we are ready to give another proof of Theorem 8.4.1. We restate the theorem for the
reader’s convenience.

Theorem 8.5.2 (Theorem 8.4.1). Let r, s, and k be integers with 0 ≤ r, s ≤ k. If r ≤ s, then∑
n≥0

µ≤k
n,r,s(b,λ)x

n = xs−r ·
P ∗
r (x; b,λ)δ

s+1P ∗
k−s(x; b,λ)

P ∗
k+1(x; b,λ)

.

If r > s, then ∑
n≥0

µ≤k
n,r,s(b,λ)x

n = λs+1 · · ·λrxr−s ·
P ∗
s (x; b,λ)δ

r+1P ∗
k−r(x; b,λ)

P ∗
k+1(x; b,λ)

.

Proof. Recall the weighted graph Gk defined in the previous section whose adjacency matrix is

A =


b0x x 0

λ1x b1x
. . .

. . .
. . . x

0 λkx bkx

 .
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0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

−λ1x2 −b3x −b4x −λ8x2

Figure 8.2: A disjoint collection of cycles in Gk (up) and the corresponding Favard tiling T ∈
FTk+1 with wt∗(T ) = λ1λ8b3b4x

6 (bottom) for k = 8.

By (8.4.2) and Proposition 8.5.1,∑
n≥0

µ≤k
n,r,s(b,λ)x

n =
∑

p∈P (r→s)

w(p) =
Γr,s

Γ
, (8.5.3)

where

Γ =
∑

{C1,C2,...,Ct}∈C

(−1)tw(C1) · · ·w(Ct),

Γr,s =
∑

(p,{C1,C2,...,Ct})∈Cr,s

w(p) · (−1)tw(C1) · · ·w(Ct).

Since A is tridiagonal, every cycle with nonzero weight must be a cycle of the form (i) or
(i − 1, i) whose weight is −bix or −λix2. Then a collection {C1, C2, . . . , Ct} of disjoint cycles
is equivalent to a Favard tiling T ∈ FTk+1, where a cycle (i) corresponds to a black monomino
labeled i and a cycle (i − 1, i) corresponds to a black domino labeled i − 1, i. A red monomino
labeled i in T means that there is no cycle containing i in {C1, C2, . . . , Ct}. In this correspondence
we have

(−1)tw(C1) · · ·w(Ct) = wt∗(T ),

where wt∗(T ) is the product of −bix for each black monomino labeled i and −λix2 for each black
domino labeled i− 1, i. For example, see Figure 8.2. This implies that

Γ =
∑

T∈FTk+1

wt∗(T ) = P ∗
k+1(x), (8.5.4)

where the second identity follows from the recurrence (8.3.2).
On the other hand, if (p, {C1, C2, . . . , Ct}) ∈ Cr,s, then p must be the unique self-avoiding

path from r to s, namely p = (r, r + 1, . . . , s). If r ≤ s, then w(p) = xs−r, and if r > s, then
w(p) = λs+1 · · ·λr. Moreover, we can divide {C1, C2, . . . , Ct} into two sets {C ′

1, . . . , C
′
t1} and

{C ′′
1 , . . . , C

′′
t2} such that each C ′

i is a cycle with elements less than min{r, s} and each C ′′
i is a cycle

with elements greater than max{r, s}. This shows that

Γr,s =

{
xs−rP ∗

r (x; b,λ)δ
s+1P ∗

k−s(x; b,λ) if r ≤ s,

λs+1 · · ·λrxr−sP ∗
s (x; b,λ)δ

r+1P ∗
k−r(x; b,λ) otherwise.

(8.5.5)

By (8.5.3), (8.5.4), and (8.5.5), we obtain the theorem.

8.6 Determinants and disjoint cycles

Recall that we have proved Theorem 8.4.1 in two difference ways. The important tools in the first
and the second proofs are Proposition 8.4.3 and Proposition 8.5.1, respectively, which we state
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0 1 · · · r − 1 r s s+ 1 s+ 2 · · · k

P ∗
r (x; b,λ) xs−r δs+1P ∗

k−s(x; b,λ)

0 1 · · · s− 1 s r r + 1 r + 2 · · · k

P ∗
s (x; b,λ) λs+1 · · ·λrxr−s δr+1P ∗

k−r(x; b,λ)

Figure 8.3: A pair (p, {C1, C2, . . . , Ct}) ∈ Cr,s is illustrated at the top for the case r ≤ s and at
the bottom for the case r > s.

here again: ∑
p∈P (r→s)

w(p) =
(−1)r+s[I −A]{s}c,{r}c

det(I −A)
, (8.6.1)

∑
p∈P (r→s)

w(p) =
Γr,s

Γ
. (8.6.2)

It is thus natural to ask whether there is a connection between these two identities. To answer
this question, in this section, we will show that the numerators and the denominators in (8.6.1)
and (8.6.2) coincide.

As before let G = (V,E) be a directed graph on the vertex set V = [m] with edge-weight
w : E → K and adjacency matrix A = (ai,j)

m
i,j=1. Then we have

detA =
∑

π∈Sm

sgn(π)

m∏
i=1

ai,π(i).

Let π = C1 · · ·Ct be a cycle decomposition of π. Since sgn(π) = (−1)evencycle(π), we have

sgn(π)

m∏
i=1

ai,π(i) =

t∏
i=1

(−1)|Ci|−1w(Ci),

where for a cycle C = (r1, . . . , rs), we define |C| = s− 1 and w(C) = ar1,r2ar2,r3 · · · ars,r1 . Hence
we can write

detA =
∑

{C1,...,Ct}∈X

t∏
i=1

(−1)|Ci|−1w(Ci), (8.6.3)

where X is the set of all possible collections {C1, . . . , Ct} of disjoint cycles whose union C1∪· · ·∪Ct

as a set is [m].

Proposition 8.6.1. We have
det(I −A) = Γ.

Proof. By (8.6.3), we have

det(I −A) =
∑

{C1,...,Ct}∈X

t∏
i=1

(−1)|Ci|−1w′(Ci), (8.6.4)

where w′(C) = 1 − w(C) if C is a cycle of length 1 and w′(C) = (−1)|C|w(C) otherwise. This
means that for a cycle C of length 1 we have two choices one for 1 and the other for −w(C). If
we remove the cycles of length 1 with a choice of 1, we can rewrite (8.6.4) as

det(I −A) =
∑

{C1,...,Ct}∈C

t∏
i=1

(−1)w(Ci),
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where C is the set of all collections {C1, C2, . . . , Ct} of disjoint cycles in G. Since the right-hand
side is equal to the definition of Γ in (8.5.1), we obtain the desired formula.

For a word w = w1 · · ·wn of distinct integers, the standardization st(w) of w is the permuta-
tion π = π1 · · ·πn ∈ Sn such that πi < πj if and only if wi < wj for all 1 ≤ i, j ≤ n. For example,
if w = 43179, then st(w) = 32145.

Lemma 8.6.2. Let π = π1 · · ·πn be a permutation such that πi = j and let

π′ = π1 · · ·πi−1πi+1 · · ·πn.

Then
sgn(st(π′)) = (−1)j+i sgn(π).

Proof. Note that sgn(st(π′)) = (−1)inv(π
′) and sgn(π) = (−1)inv(π). To compare inv(π) and inv(π′)

we consider σ = jπ′. Then we have (−1)inv(σ) = (−1)inv(σ) and (−1)inv(σ) = (−1)inv(π
′)+j−1.

Hence

sgn(st(π′)) = (−1)inv(π
′) = (−1)inv(σ)+j−1 = (−1)inv(π)+i−1+j−1 = (−1)j+i sgn(π).

Proposition 8.6.3. We have

(−1)r+s[I −A]{s}c,{r}c = Γr,s.

Proof. Let bi,j = δi,j − ai,j . Then

[I −A]{s}c,{r}c =
∑

π∈Sm

π(s)=r

sgn(st(π′))
∏

1≤i≤m
i̸=s

bi,π(i),

where π′ = π1 · · ·πs−1πs+1 · · ·πn. By Lemma 8.6.2,

[I −A]{s}c,{r}c = (−1)r+s
∑

π∈Sm

π(s)=r

sgn(π)
∏

1≤i≤m
i ̸=s

bi,π(i). (8.6.5)

Suppose that r = s. Then

[I −A]{s}c,{r}c =
∑

π∈Sm

π(r)=r

sgn(π)
∏

1≤i≤m
i ̸=r

bi,π(i).

By the same argument in the proof of Proposition 8.6.1, we have

[I −A]{s}c,{r}c =
∑

{C1,...,Ct}∈C′

t∏
i=1

(−1)w(Ci),

where C′ is the set of all collections {C1, C2, . . . , Ct} of disjoint cycles in G such that r is not
contained in any of these cycles. But this is equal to

Γr,r =
∑

(p,{C1,C2,...,Ct})∈Cr,r

w(p) · (−1)tw(C1) · · ·w(Ct),

since p = (r) is a cycle of length 1, hence has weight w(p) = 1.
Now suppose that r ̸= s. Note that in this case br,s = −ar,s. Consider π ∈ Sm with π(s) = r.

Then the cycle decomposition of π has a cycle containing an edge s → r. Hence we can rewrite
(8.6.5) as

(−1)r+s[I −A]{s}c,{r}c = (−a−1
s,r)

∑
{C1,...,Ct}∈X

(s→r)∈C1

t∏
i=1

(−1)|Ci|−1w′(Ci),
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where w′(C) = 1 − w(C) if C is a cycle of length 1 and w′(C) = (−1)|C|w(C) otherwise. Then,
by the same argument in the proof of Proposition 8.6.1, we have

(−1)r+s[I −A]{s}c,{r}c = (−a−1
s,r)

∑
{C1,...,Ct}∈C′

t∏
i=1

(−1)w(Ci),

where C′ is the set of all collections {C1, C2, . . . , Ct} of disjoint cycles in G such that C1 contains
an edge s → r. If we delete the edge s → r from C1, we get a path p from r to s. Therefore, the
above equation is equivalent to

(−1)r+s[I −A]{s}c,{r}c =
∑

(p,{C1,...,Ct})∈Cr,s

w(p)

t∏
i=1

(−1)w(Ci) = Γr,s.

This completes the proof.



Chapter 9

Symmetric orthogonal
polynomials

In this chapter we study symmetric orthogonal polynomials. We first define symmetric orthogonal
polynomials and show they they induce two families of orthogonal polynomials: even and odd
polynomials. We find three-term recurrences for the even and odd polynomials. We also find
connections between the original moments and the moments of even and odd polynomials. We
provide a combinatorial proof of this fact using Dyck paths and bi-colored Motzkin paths. Finally
we give an identity involving two types of continued fractions, namely, J-fractions and S-fractions.

9.1 Even and odd polynomials of symmetric OPS

Recall from Section 2.4 that a linear functional L is symmetric if all of its odd moments are
zero. Let {Pn(x)}n≥0 be a monic OPS for a linear functional L. We say that {Pn(x)}n≥0 is
symmetric if L is symmetric. We recall the following theorem, which gives equivalent conditions
of a symmetric OPS.

Theorem 9.1.1 (Theorem 2.4.6). Let L be a linear functional with monic OPS {Pn(x)}n≥0. The
following are equivalent:

(1) L is symmetric.

(2) Pn(−x) = (−1)nPn(x) for n ≥ 0.

(3) We have
Pn+1(x) = xPn(x)− λnPn−1(x).

Suppose that {Pn(x)}n≥0 is a symmetric OPS for a linear functional L, which satisfies

Pn+1(x) = xPn(x)− λnPn−1(x). (9.1.1)

By the above theorem,

P2n(−x) = (−1)2nP2n(x) = P2n(x),

P2n+1(−x) = (−1)2n+1P2n+1(x) = −P2n+1(x).

Thus we can write
P2n(x) = En(x

2), P2n+1(x) = xOn(x
2),

for some polynomials En(x) and On(x). We call {En(x)}n≥0 (resp. {On(x)}n≥0) the even poly-
nomials (resp. odd polynomials) for the symmetric OPS {Pn(x)}n≥0.

92
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Let Le and Lo be the linear functionals defined by

Le(f(x)) = L(f(x2)), Lo(f(x)) =
1

λ1
L(x2f(x2)).

Here we have the factor 1
λ1

so that Lo(1) = 1. We define

µe
n = Le(xn), µo

n = Lo(xn).

Theorem 9.1.2. The even polynomials {En(x)}n≥0 are an OPS for Le and the odd polynomials
{On(x)}n≥0 are an OPS for Lo. Moreover,

µe
n = µ2n, µo

n =
1

λ1
µ2n+2.

Proof. Since {Pn(x)}n≥0 is an OPS for L,

L(Pn(x)Pm(x)) = δn,mKn,

where Kn ̸= 0. We have

Le(En(x)Em(x)) = L(En(x
2)Em(x2)) = L(P2n(x)P2m(x)) = δn,mK2n,

Lo(On(x)Om(x)) =
1

λ1
L(x2On(x

2)Om(x2)) = L(P2n+1(x)P2m+1(x)) = δn,mK2n+1.

This shows the first statement. Since

µe
n = Le(xn) = L(x2n) = µ2n,

µo
n = Lo(xn) =

1

λ1
L(x2 · x2n) = 1

λ1
µ2n+2,

we obtain the second statement.

Since {En(x)}n≥0 and {Rn(x)}n≥0 are OPS they satisfy 3-term recurrences. Their 3-term
recurrences can be obtained easily from the original 3-term recurrence for {Pn(x)}n≥0.

Theorem 9.1.3. We have

En+1(x) = (x− λ2n − λ2n+1)En(x)− λ2n−1λ2nEn−1(x),

On+1(x) = (x− λ2n+1 − λ2n+2)On(x)− λ2nλ2n+1On−1(x).

Proof. Replacing n by 2n and 2n+ 1, respectively, in (9.1.1), we have

P2n+1(x) = xP2n(x)− λ2nP2n−1(x), (9.1.2)

P2n+2(x) = xP2n+1(x)− λ2n+1P2n(x). (9.1.3)

Multiplying both sides by x in (9.1.2) gives

On(x
2) = x2En(x

2)− λ2nOn−1(x
2),

and (9.1.3) is equivalent to

En+1(x
2) = On(x

2)− λ2n+1En(x
2).

Thus

xEn(x) = On(x) + λ2nOn−1(x),

On(x) = En+1(x) + λ2n+1En(x).

Substituting En(x) and On(x) appropriately, we obtain the recurrence in the theorem.
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There is also a simple connection between the moments of {Pn(x)}n≥0 and the moments of its
even and odd polynomials.

Corollary 9.1.4. Let {λk}k≥0 be a sequence with λ0 = 0 and let

0 = {bk = 0}k≥0,

be = {λ2k + λ2k+1}k≥0,

bo = {λ2k+1 + λ2k+2}k≥0,

λ = {λk}k≥1,

λe = {λ2k−1λ2k}k≥1,

λo = {λ2kλ2k+1}k≥1.

For a nonnegative integer n, we have

µ2n(0,λ) = µn(b
e,λe),

µ2n+2(0,λ) = λ1µn(b
o,λo).

Proof. This follows immediate from Theorem 9.1.2 and Theorem 9.1.3.

9.2 Converting Dyck paths into bi-colored Motzkin paths

In this section we give a combinatorial proof of Corollary 9.1.4. The idea of proof is to convert a
Dyck path into a bi-colored Motzkin path.

Definition 9.2.1. A bi-colored Motzkin path is a Motzkin path in which every horizontal
step is colored red or blue. Let Motzn(2) denote the set of bi-colored Motzkin paths from (0, 0) to
(n, 0). We also define Motz0n(2) to be the set of bi-colored Motzkin paths in Motzn(2) such that
every horizontal step of height 0 is colored red.

Let π ∈ Dyck2n. Write π = S1 · · ·S2n as a sequence of steps. We denote by U,D,Hr, and Hb

an up step, a down step, a red horizontal step, and a blue horizontal step, respectively. Then we
define ϕ0(π) to be the bi-colored Motzkin path τ = T1 · · ·Tn ∈ Motz0n(2) such that

Ti =


U if S2i−1S2i = UU,

D if S2i−1S2i = DD,

Hr if S2i−1S2i = UD,

Hb if S2i−1S2i = DU.

For example, see Figure 9.1.
Now let π = S1 · · ·S2n+2 ∈ Dyck2n+2. Then we define ϕ1(π) to be the bi-colored Motzkin path

τ = T1 · · ·Tn ∈ Motzn(2) such that

Ti =


U if S2iS2i+1 = UU,

D if S2iS2i+1 = DD,

Hr if S2iS2i+1 = UD,

Hb if S2iS2i+1 = DU.

For example, see Figure 9.2.

Theorem 9.2.2. The maps ϕ0 : Dyck2n → Motz0n(2) and ϕ1 : Dyck2n+2 → Motzn(2) are bijec-
tions. Moreover, if ϕ0(π) = τ (resp. ϕ1(π) = τ), then wt(π;0,λ) = wt(τ, be,λe) (resp. wt(π;0,λ) =
λ1 wt(τ, b

o,λo)).

Proof. This is immediate from the constructions of the maps ϕ0 and ϕ1. Note that ϕ0(π) has no
blue horizontal steps because there is no DU at level 0 in π. We have wt(π;0,λ) = λ1 wt(τ, b

o,λo)
because S2n+2 is always a down step of starting height 1.

Theorem 9.2.2 gives a combinatorial proof of Corollary 9.1.4.
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Figure 9.1: A Dyck path π ∈ Dyck2n and the corresponding bi-colored Motzkin path ϕ0(π) ∈
Motz0n(2) for n = 8. For visibility, a blue horizontal step are drawn using dashed segments.
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Figure 9.2: A Dyck path π ∈ Dyck2n+2 and the corresponding bi-colored Motzkin path ϕ1(π) ∈
Motzn(2) for n = 7.
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9.3 J-fractions and S-fractions

In this section we find a connection between the following two types of continued fractions. A
S-fraction or Stieltjes-fraction is a continued fraction of the form

1

1−
c1x

1−
c2x

. . .

.

A J-fraction or Jacobi-fraction is a continued fraction of the form

1

1− b0x−
λ1x

2

1− b1x−
λ2x

2

. . .

.

Theorem 9.3.1. We have

1

1−
λ1x

1−
λ2x

. . .

=
1

1− (λ0 + λ1)x−
λ1λ2x

2

1− (λ2 + λ3)x−
λ3λ4x

2

. . .

= 1 +
λ1x

1− (λ1 + λ2)x−
λ2λ3x

2

1− (λ3 + λ4)x−
λ4λ5x

2

. . .

,

where λ0 = 0.

Proof. We use the notation in Corollary 9.1.4. Since

1

1−
λ1x

1−
λ2x

. . .

=
∑
n≥0

∑
π∈Dyck2n

wt(π;0,λ)xn =
∑
n≥0

µ2n(0,λ)x
n

and

1

1− (λ0 + λ1)x−
λ1λ2x

2

1− (λ2 + λ3)x−
λ3λ4x

2

. . .

=
∑
n≥0

∑
π∈Motzn

wt(π; be,λe)xn =
∑
n≥0

µn(b
e,λe)xn,

we obtain the first equality by Corollary 9.1.4. For the second equality observe that, by Corol-
lary 9.1.4,

λ1
∑
n≥0

µn(b
o,λo)xn =

∑
n≥0

µ2n+2(0,λ)x
n =

1

x

∑
n≥0

µ2n(0,λ)x
n − 1

 .
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Hence ∑
n≥0

µ2n(0,λ)x
n = 1 + λ1x

∑
n≥0

µn(b
o,λo)xn = 1 + λ1x

∑
n≥0

∑
π∈Motzn

wt(π; bo,λo)xn

= 1 +
λ1x

1− (λ1 + λ2)x−
λ2λ3x

2

1− (λ3 + λ4)x−
λ4λ5x

2

. . .

,

which gives the second equality.



Chapter 10

Linearization coefficients

Let {Pn(x)}n≥0 be an OPS for L. A linearization problem is a problem to determine the coefficients

c
(ℓ)
m,n in the expansion:

Pm(x)Pn(x) =
∑
ℓ≥0

c(ℓ)m,nPℓ(x).

If we multiply both sides by Pℓ(x) and take the linear functional L, we get

c(ℓ)m,n =
L(Pℓ(x)Pm(x)Pn(x))

L(Pℓ(x)2)
=

L(Pℓ(x)Pm(x)Pn(x))

λ1 · · ·λℓ
.

Thus in order to find c
(ℓ)
m,n it suffices to compute L(Pℓ(x)Pm(x)Pn(x)). For this reason, we will

call L(Pℓ(x)Pm(x)Pn(x)), or more generally L(Pn1
(x) · · ·Pnk

(x)), a linearization coefficient.
Finding a linearization coefficient in general can be difficult. In this chapter we will find

combinatorial interpretations for the classical orthogonal polynomials: Tchebyshev polynomials
of the second kind, Hermite polynomials, Charlier polynomials, and Laguerre polynomials. In the
case of Laguerre polynomials, we will also find interesting connections to multi-derangements and
MacMahon’s master theorem.

Roughly speaking the main idea is as follows. First, find a combinatorial interpretation for
Pn(x). This will give a combinatorial meaning to the product Pn1(x) · · ·Pnk

(x) in which every
term is of a certain form a(T )xb(T ). Then applying the linear functional L converts this term into
a(T )µb(T ). We then replace µb(T ) by the combinatorial meaning for the moment. Now we have
a combinatorial meaning to L(Pn1

(x) · · ·Pnk
(x)). Finally, we find an appropriate sign-reversing

involution to cancel unwanted negative terms.

10.1 Hermite polynomials

Recall that the (rescaled) Hermite polynomials {H̃n(x)}n≥0 are defined by

H̃n+1(x) = xH̃n(x)− nH̃n−1(x).

The n-th moment µn = L(xn) is equal to the number of perfect matchings on [n]. Note that
L(x2n+1) = 0.

Let Mn denote the set of all matchings on [n]. For τ ∈ Mn, we define e(τ) to be the number
of edges in τ and fix(τ) to be the number of singletons in τ .

Lemma 10.1.1. We have
H̃n(x) =

∑
τ∈Mn

(−1)e(τ)xfix(τ).

Proof. This can be proved easily by induction on n.

98
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Definition 10.1.2. Let n1, . . . , nk be fixed nonnegative integers with n1 + · · · + nk = n. For
1 ≤ s ≤ k, let

Js = {i : n1 + · · ·+ nj−1 + 1 ≤ i ≤ n1 + · · ·+ nj}. (10.1.1)

Note that [n] = J1 ⊔ · · · ⊔ Jk. Consider a matching τ on [n]. We say that an edge (i, j) of
τ is homogeneous if i, j ∈ Js for some s. Otherwise, we say that (i, j) is inhomogeneous.
We also say that τ is homogeneous (resp. inhomogeneous) if every edge in τ is homogeneous
(resp. inhomogeneous). We denote by IPM(n1, . . . , nk) the set of inhomogeneous perfect matchings
on [n].

Theorem 10.1.3. We have

L(H̃n1(x) · · · H̃nk
(x)) = | IPM(n1, . . . , nk)|.

Proof. By Lemma 10.1.1,

L
(
H̃n1

(x) · · · H̃nk
(x)
)
= L

 ∑
(τ1,...,τk)∈Mn1×···×Mnk

k∏
i=1

(−1)e(τi)xfix(τi)


=

∑
(τ1,...,τk)∈Mn1

×···×Mnk

(−1)e(τ1)+···+e(τk)L
(
xfix(τ1)+···+fix(τk)

)
.

Since L
(
xfix(τ1)+···+fix(τk)

)
is the number of perfect matchings of size fix(τ1) + · · · + fix(τk), we

introduce the following definition.
Let X be the set of all pairs (τ, π) satisfying the following conditions:

• τ is a homogeneous matching on [n],

• π is a perfect matching on the set of fixed points of τ .

Then the above equation can be written as follows:

L
(
H̃n1

(x) · · · H̃nk
(x)
)
=

∑
(τ,π)∈X

(−1)e(τ).

Now we construct a sign-reversing involution onX. Let (τ, π) ∈ X. If there are no homogeneous
edges, then τ has only fixed points and π ∈ IPM(n1, . . . , nk). In this case we define ϕ(τ, π) = (τ, π).
Suppose that there are homogeneous edges in τ or π. Find the homogeneous edge (i, j) such that
j is the smallest possible. Then we toggle the membership of this edge. More precisely, let

τ ′ = τ∆{(i, j)}, π′ = π∆{(i, j)},

where τ∆{(i, j)} means the matching obtained from τ by deleting the edge (i, j) if it is there, and
adding the edge (i, j) otherwise. Let ϕ(τ, π) = (τ ′, π′). See Figure 10.1.

It is easy to see that ϕ is a sign-reversing involution with fixed point set IPM(n1, . . . , nk). This
completes the proof.

Corollary 10.1.4. We have
L(H̃m(x)H̃n(x)) = δm,nn!.

Proof. If m ̸= n, then there is no inhomogeneous perfect matching. Hence the value is 0. If
m = n, there are n! inhomogeneous perfect matchings since such an object is equivalent to a
bijection between J1 and J2.
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1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Figure 10.1: An element (τ, π) ∈ X and the corresponding element ϕ(τ, π). The edges in π are
drawn with dotted arc. The map ϕ toggles the edge (2, 4).

10.2 Charlier polynomials

Recall that the Charlier polynomials are defined by C−1(x; a) = 0, C0(x; a) = 1, and

Cn+1(x; a) = (x− n− a)Cn(x; a)− anCn−1(x; a), n ≥ 1.

For simplicity we will only consider the case a = 1. Let Cn(x) = Cn(x; 1). Then

Cn+1(x) = (x− n− 1)Cn(x)− nCn−1(x), n ≥ 1. (10.2.1)

The moment is
µn = L(xn) = |Πn|,

where Πn is the set of set partitions of [n].

Definition 10.2.1. A decorated permutation is a permutation in which each cycle may or may
not be decorated. A properly decorated permutation is a decorated permutation such that
every cycle of length at least 2 is decorated. Let Dn denote the set of decorated permutations on
[n] and let PDn denote the set of properly decorated permutations on [n]. For π ∈ Dn, let dc(π)
denote the number of decorated cycles in π.

We will always write a cycle so that it starts with the smallest integer and write a decorated
cycle as ρ∗.

Lemma 10.2.2. We have
Cn(x) = (−1)n

∑
π∈PDn

(−x)dc(π). (10.2.2)

Proof. Let Fn(x) be the right-hand side of (10.2.2). We will prove that Cn(x) = Fn(x) by induction
on n. It is true for n = 0, 1 because F0(x) = C0(x) = 1 and

F1(x) = (−1)(1− x) = x− 1 = C1(x).

Suppose that we have Ck(x) = Fk(x) for all k < n+ 1. By (10.2.1), to prove Cn+1(x) = Fn+1(x),
it suffices to show that

Fn+1(x) = (x− n− 1)Fn(x)− nFn−1(x). (10.2.3)

The right-hand side of (10.2.3) is equal to

xFn(x)− Fn(x)− nFn(x)− nFn−1(x) =

(−1)n

(
−
∑
π∈A1

(−x)dc(π) −
∑
π∈A2

(−x)dc(π) −
∑
π∈A3

(−x)dc(π) +
∑
π∈A4

(−x)dc(π)
)
,
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where A1, A2, A3 and A4 are the sets of π ∈ Dn+1 defined as follows:

• π ∈ A1 if and only if π = σ(n+ 1)∗ for some σ ∈ PDn,

• π ∈ A2 if and only if π = σ(n+ 1) for some σ ∈ PDn,

• π ∈ A3 if and only if π is obtained from σ by inserting n + 1 after any integer for some
σ ∈ PDn,

• π ∈ A4 if and only if π = σ′(i, n+1), for some i ∈ [n] and σ ∈ PDn, and σ
′ is the decorated

permutation obtained from σ by increasing every integer j, i ≤ j ≤ n, by 1.

Observe that A1 ⊆ PDn+1, A2 ⊆ PDn+1, but A3 ̸⊆ PDn+1 and A4 ∩ PDn+1 = ∅. Moreover,
for π ∈ A3, we have π ̸∈ PDn+1 if and only if π has a non-decorated cycle (i, n + 1) for some
i ∈ [n]. Let A′

3 = A3 ∩PDn+1 and A′′
3 = A3 −PDn+1. Then A

′′
3 is the set of elements π such that

n+ 1 is in a non-decorated cycle (i, n+ 1) of length 2. This will be canceled with A4:

−
∑
π∈A′′

3

(−1)n+1−dc(π)xdc(π) +
∑
π∈A4

(−1)n+1−dc(π)xdc(π) = 0.

Thus
xFn(x)− Fn(x)− nFn(x)− nFn−1(x) = (−1)n+1

∑
π∈A1⊔A2⊔A′

3

(−x)dc(π).

Now consider π ∈ PDn+1. Then there are 3 cases:

• n+ 1 forms a decorated cycle (n+ 1)∗ of length 1,

• n+ 1 forms a non-decorated cycle (n+ 1) of length 1,

• n+ 1 is contained in a decorated cycle of length at least 2.

These cases are exactly those in A1, A2, A
′
3 respectively. Thus A1 ⊔ A2 ⊔ A′

3 = PDn+1, and we
obtain (10.2.3).

In a similar way to Definition 10.1.2, we define Π(n1, . . . , nk) to be the set of inhomogeneous
set partitions on [n] = J1 ⊔ · · · ⊔ Jk, where

Js = {i : n1 + · · ·+ nj−1 + 1 ≤ i ≤ n1 + · · ·+ nj}.

Similarly, a homogeneous cycle is a cycle consisting of elements from Js for some s ∈ [k].

Theorem 10.2.3. For any integers n1, . . . , nk ≥ 0, we have

L(Cn1
(x) · · ·Cnk

(x)) =
∑

π∈Π(n1,...,nk)

wt(π).

Proof. Let n = n1 + · · ·+ nk. By Lemma 10.2.2,

L (Cn1
(x) · · ·Cnk

(x)) = (−1)nL

 ∑
(τ1,...,τk)∈Πn1

×···×Πnk

k∏
i=1

(−x)dc(τi)


= (−1)n
∑

(τ1,...,τk)∈Πn1
×···×Πnk

(−1)dc(τ1)+···+dc(τk)L
(
xdc(τ1)+···+dc(τk)

)
= (−1)n

∑
(τ1,...,τk)∈Πn1

×···×Πnk

(−1)dc(τ1)+···+dc(τk)|Πdc(τ1)+···+dc(τk)|.

Note that every non-decorated cycle has length 1. Hence they can be reconstructed from the
decorated cycles and we can safely ignore them. Note that |Πdc(τ1)+···+dc(τk)| is the number of
ways to construct a set partition of the set of all decorated cycles. To describe this more precisely,
we define the following set.

Let X be the set of collections π = {B1, . . . , Br} satisfying the following conditions:
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(1) each Bi = {C(i)
1 , . . . , C

(i)
ti } is a nonempty set of homogeneous cycles;

(2) {C(i)
j : 1 ≤ i ≤ r, 1 ≤ j ≤ ti} is a partition of a subset A of [n], where C

(i)
j is considered as

the set of elements in it.

Given π = {B1, . . . , Br} ∈ X, we define

sgn(π) = (−1)|B1|+···+|Bk|.

Then, by the above observation, we have

L (Cn1
(x) · · ·Cnk

(x)) = (−1)n
∑
π∈X

sgn(π). (10.2.4)

Now we will find a sign-reversing involution on X. Suppose π = {B1, . . . , Br} ∈ X. We first
cancel a non-decorated cycle (of length 1) and a block consisting of a single (decorated) cycle
of length 1. After the cancellation, we may assume that π has neither non-decorated cycles nor
blocks consisting of a single cycle of length 1.

Suppose that π has a block Br that contains two elements from the same set Js. Then we find
smallest such r and then find i, j ∈ Br ∩Js such that (i, j) is the lexicographically smallest. Let π′

be the configuration obtained by multiplying the transposition (i, j) to the underlying permutation
of π. This gives a sign-reversing involution.

The fixed points are the configurations π = {B1, . . . , Br} ∈ X such that for every i,

• Bi consists of (decorated) cycles of length 1,

• |Bi| ≥ 2,

• Bi ∩ Jj has at most one element for all j.

Hence the fixed points are in natural bijection with inhomogeneous set partitions in Π(n1, . . . , nk).
Moreover in this case, we have (−1)n sgn(π) = (−1)n+n = 1.

Example 10.2.4. Let (n1, n2, n3) = (4, 5, 3).

(1) Let

τ = {(1, 3)∗, (2)∗, (4)} ∪ {(5, 6, 9)∗, (7), (8)} ∪ {(10)∗, (11, 12)∗},

π =

{
{(1, 3)∗, (5, 6, 9)∗}, {(2)∗, (11, 12)∗}, {(10)∗}

}
.

Then 4 is the smallest integer j such that there is (j) or {(j)∗}. Hence (τ, π) 7→ (τ ′, π′),
where

τ ′ = {(1, 3)∗, (2)∗} ∪ {(4)∗} ∪ {(5, 6, 9)∗, (7), (8)} ∪ {(10)∗, (11, 12)∗},

π′ =

{
{(1, 3)∗, (5, 6, 9)∗}, {(4)∗}, {(2)∗, (11, 12)∗}, {(10)∗}

}
.

(2) Let

τ = {(1, 3, 4)∗, (2)∗} ∪ {(5, 6, 9)∗, (7)∗, (8)∗} ∪ {(10)∗, (11, 12)∗},

π =

{
{(1, 3, 4)∗, (2)∗, (5, 6, 9)∗}, {(7)∗, (8)∗, (10)∗}, {(11, 12)∗}

}
.

In this case, there is no integer j such that there is (j) or {(j)∗}. Therefore, we find the pair
(1, 2), which is the lexicographically smallest (i, j) such that i and j are in the same block
of π. Thus we multiply (1, 2) to the permutation (1, 3, 4)(2):

(1, 2)(1, 3, 4)(2) = (1, 3, 4, 2).
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Thus (τ, π) 7→ (τ ′, π′), where

τ ′ = {(1, 3, 4, 2)∗} ∪ {(5, 6, 9)∗, (7), (8)} ∪ {(10)∗, (11, 12)∗},

π =

{
{(1, 3, 4, 2)∗, (5, 6, 9)∗}, {(7)∗, (8)∗, (10)∗}, {(11, 12)∗}

}
.

Corollary 10.2.5. We have
L(Cm(x)Cn(x)) = δm,nn!.

10.3 Tchebyshev polynomials

The (normalized) Tchebyshev polynomials of the second kind Ũn(x) are defined by

Ũn+1(x) = xŨn(x)− Ũn−1(x), n ≥ 0.

By the recurrence (or by the Favard tiling model), we have

Ũn(x) =
∑

τ∈F (n)

(−1)e(τ)xfix(τ), (10.3.1)

where F (n) is the set of matchings on [n] such that every edge consists of two consecutive integers.
The moment is

L(xn) = µn = |Dyckn |.

Note that µ2n = Cn and µ2n+1 = 0. There are many combinatorial objects counted by the Catalan
number Cn. For our purpose, it is convenient to use the following objects.

Definition 10.3.1. A matching π is noncrossing if there are no two edges (a, c) and (b, d) such
that a < b < c < d.

Proposition 10.3.2. The number of noncrossing perfect matchings on [2n] is Cn.

Proof. Recall the bijection between Hermite histories and perfect matchings. If every label of a
down step is 1, then the corresponding matching is noncrossing. This gives a bijection between
Dyck paths of length 2n and noncrossing perfect matchings on [2n].

Let NC(n1, . . . , nk) denote the number of inhomogeneous noncrossing matchings.

Theorem 10.3.3. We have

L(Ũn1
(x) · · · Ũnk

(x)) = |NC(n1, . . . , nk)|.

10.4 Laguerre polynomials

The Laguerre polynomials are defined by

L
(α)
n+1(x) = (x− 2n− α)L(α)

n (x)− n(n− 1 + α)L
(α)
n−1(x), n ≥ 1.

In this section we will only consider the case α = 1. Let Ln(x) = L
(1)
n (x) so that

Ln+1(x) = (x− 2n− 1)Ln(x)− n2Ln−1(x), n ≥ 1. (10.4.1)

Recall that
µn = L(xn) = n!.

Let [n] = {1, . . . , n}. We denote by Kn,n the complete bipartite graph with vertex set [n]⊔ [n]
and edge set {(i, j) : i, j ∈ [n]}. Let M(Kn,n) be the set of matchings on [n]⊔ [n] whose edges are
of the form (i, j) for some i, j ∈ [n].
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Lemma 10.4.1. We have

Ln(x) =
∑

τ∈M(Kn,n)

(−1)e(τ)xfix(e)/2. (10.4.2)

Proof. Let Fn(x) be the right-hand side of (10.4.2). We will prove that Ln(x) = Fn(x) by induction
on n. It is true for n = 0, 1 because F0(x) = L0(x) = 1 and F1(x) = x− 1 = L1(x). Suppose that
we have Lk(x) = Fk(x) for all k < n+ 1. By (10.4.1), to prove Ln+1(x) = Fn+1(x), it suffices to
show that

Fn+1(x) = (x− 2n− 1)Fn(x)− n2Fn−1(x). (10.4.3)

Letting w(τ) = (−1)e(τ)xfix(τ)/2, the right-hand side of (10.4.3) is equal to

xFn(x)− Fn(x)− nFn(x)− nFn(x)− n2Fn−1(x) =

+
∑
τ∈A1

w(τ) +
∑
τ∈A2

w(τ) +
∑
τ∈A3

w(τ) +
∑
τ∈A4

w(τ)−
∑
τ∈A5

w(τ), (10.4.4)

where

A1 = {τ ∈M(Kn+1,n+1) : n+ 1 and n+ 1 are fixed points in τ},
A2 = {τ ∈M(Kn+1,n+1) : (n+ 1, n+ 1) is an edge in τ},
A3 = {τ ∈M(Kn+1,n+1) : (i, n+ 1) is an edge in τ for some 1 ≤ i ≤ n},
A4 = {τ ∈M(Kn+1,n+1) : (i, n+ 1) is an edge in τ for some 1 ≤ i ≤ n},
A5 = {τ ∈M(Kn+1,n+1) : (i, n+ 1) and (j, n+ 1) is an edge in τ for some 1 ≤ i, j ≤ n}.

Since A3 ∩A4 = A5, the right-hand side of (10.4.4) is equal to∑
τ∈A1∪A2∪A3∪A4

w(τ) =
∑

τ∈M(Kn+1,n+1)

w(τ) = Fn+1(x).

This shows (10.4.3), which completes the proof.

Recall that a derangement is a permutation π ∈ Sn such that πi ̸= i for all i ∈ [n]. We
generalize the notion of derangements as follows.

Definition 10.4.2. Let n1, . . . , nk be nonnegative integers with n1 + · · · + nk = n. We use the
notation Js in (10.1.1). An (n1, . . . , nk)-derangement is a permutation π ∈ Sn such that for
any 1 ≤ s ≤ k, if i ∈ Js, then πi ̸∈ Js. Let d(n1, . . . , nk) denote the number of all (n1, . . . , nk)-
derangements.

Note that the a usual derangement is a (1, . . . , 1)-derangement.

Theorem 10.4.3. We have

L(Ln1
(x) · · ·Lnk

(x)) = d(n1, . . . , nk).

Proof. Let n = n1 + · · ·+ nk. By (10.4.2),

L (Ln1
(x) · · ·Lnk

(x))

= L

 ∑
(τ1,...,τk)∈M(Kn1,n1

)×···×M(Knk,nk
)

k∏
i=1

(−1)e(τi)xfix(τi)/2


=

∑
(τ1,...,τk)∈M(Kn1,n1

)×···×M(Knk,nk
)

(−1)e(τ1)+···+e(τk)L
(
x(fix(τ1)+···+fix(τk))/2

)
=

∑
(τ1,...,τk)∈M(Kn1,n1 )×···×M(Knk,nk

)

(−1)e(τ1)+···+e(τk)((fix(τ1) + · · ·+ fix(τk))/2)!.
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Observe that ((fix(τ1) + · · ·+ fix(τk))/2)! is the number of ways to connect the fixed points in
[n] to the fixed points in [n]. We will find a combinatorial interpretation of the above sum.

Consider a matching τ ∈M(Kn,n). We say that an edge (i, j) of τ is homogeneous if i, j ∈ Js
for some s. Otherwise, (i, j) is inhomogeneous. Let X be the set of pairs (τ, π) satisfying the
following conditions:

(1) τ is a homogeneous matching in M(Kn,n);

(2) π is a complete matching on the fixed points of τ using edges from M(Kn,n).

Then we have
L (Ln1

(x) · · ·Lnk
(x)) =

∑
(τ,π)∈X

(−1)e(τ).

Now we will find a sign-reversing involution ϕ on X. Suppose (τ, π) ∈ X. If there is no homoge-
neous edge, then define ϕ(τ, π) = (τ, π). If there are homogeneous edges, find the lexicographically
smallest (i, j) such that (i, j) is a homogeneous edge in τ or π. Define ϕ(τ, π) = (τ ′, π′), where
τ ′ = τ∆{(i, j)} and π = π∆{(i, j)}. This is a sign-reversing involution. The fixed point set is the
set of (τ, π) ∈ X such that τ has no edges and π is an inhomogeneous perfect matching on Kn,n.
This is in natural bijection with (n1, . . . , nk)-derangements.

10.5 Multi-derangements and MacMahon’s master theorem

In this section we will prove the following formula for the generating function for the number of
(n1, . . . , nk)-derangements.

Theorem 10.5.1. For a fixed integer k > 0, we have∑
n1,...,nk≥0

d(n1, . . . , nk)
xn1
1

n1!
· · ·

xnk

k

nk!
=

1

1− e2 − 2e3 − 3e4 − · · · − (k − 1)ek
,

where en is the elementary symmetric function of x1, . . . , xk, i.e.,

en =
∑

1≤i1<···<in≤k

xi1 · · ·xin .

We will prove this theorem using MacMahon’s master theorem.

Theorem 10.5.2 (MacMahon’s master theorem). For a matrix A = (ai,j)
k
i,j=1, let

F (n1, . . . , nk) =
[
yn1
1 · · · ynk

k

] k∏
i=1

(
ai,1y1 + · · ·+ ai,kyk

)ni
.

Then ∑
n1,...,nk≥0

F (n1, . . . , nk)x
n1
1 · · ·xnk

k =
1

det(Ik − TA)
,

where T = (δi,jxi)
k
i,j=1.

A multi-derangement of {1n1 , 2n2 , . . . , knk} is an arrangement π = π1 · · ·πn of the elements
in this multiset such that for all 1 ≤ s ≤ k, if i ∈ Js, then πi ̸= s. The number of multi-
derangements of {1n1 , 2n2 , . . . , knk} is

m(n1, . . . , nk) :=
d(n1, . . . , nk)

n1! · · ·nk!
.
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Lemma 10.5.3. We have

m(n1, . . . , nk) = [yn1
1 · · · ynk

k ]

k∏
i=1

(
ai,1y1 + · · ·+ ai,kyk

)ni
,

where ai,j = 1− δi,j.

Proof. Let π = π1 · · ·πn be a multi-derangement of {1n1 , 2n2 , . . . , knk}. Then π1, . . . , πn1
are

integers in [k] − {1}. Thus, the subword π1 · · ·πn1 can be constructed by selecting yπ1 , . . . , yπn1

in the expansion of the product(
a1,1y1 + · · ·+ a1,kyk

)n1
=
(
y2 + · · ·+ yk

)n1
.

Similarly, the subword πn1+1 · · ·πn1+n2
can be constructed by from a term in the expansion of the

product (
a2,1y1 + · · ·+ a2,kyk

)n2
=
(
y1 + y3 + · · ·+ yk

)n2
.

Continuing in this manner we can constuct the word π from a term in the expansion of

k∏
i=1

(
ai,1y1 + · · ·+ ai,kyk

)ni
. (10.5.1)

Since π has ni i’s, such a term must be equal to yn1
1 · · · ynk

k . This gives a bijection between
all multi-derangements of {1n1 , 2n2 , . . . , knk} and the terms equal to yn1

1 · · · ynk

k in the expansion
(10.5.1). This implies the statement in the lemma.

Let Jk be the k × k matrix such that every entry is 1.

Lemma 10.5.4. We have
det(Ir − Jr) = 1− r.

Proof. If λ1, . . . , λr are the eigenvalues of Jr, then

det(xIr − Jr) = (x− λ1) · · · (x− λr).

Observe that 0 is an eigenvalue of Jr with eigenvectors ϵi − ϵi+1, 1 ≤ i ≤ r − 1 and r is an
eigenvalue with eigenvector ϵ1 + · · · + ϵr, where ϵ1, . . . , ϵr are the standard basis vectors in Rr.
Thus, (λ1, . . . , λr) = (r, 0, . . . , 0) and we obtain

det(xIr − Jr) = xr−1(x− r).

Substituting x = 1 gives the lemma.

Lemma 10.5.5. Let A = Jk − Ik. Then

det(Ik − TA) = 1− e2 − 2e3 − 3e4 − · · · − (k − 1)ek,

where T = (δi,jxi)
k
i,j=1.

Proof. We have Ik − TA = (bi,j)
k
i,j=1, where

bi,j =

{
1 if i = j,

−xi otherwise.

Then

det(Ik − TA) =
∑
π∈Sk

sgn(π)

k∏
i=1

bi,π(i) =
∑

H⊆[k]

∑
π∈Sk,Fix(π)=[k]\H

sgn(π)
∏
i∈H

bi,π(i). (10.5.2)
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Suppose H ⊆ [k]. If π ∈ Sn satisfies Fix(π) = [k] \H, then∏
i∈H

bi,π(i) =
∏
i∈H

(−xi) = (−1)|H|
∏
i∈H

xi.

Thus

∑
π∈Sk,Fix(π)=[k]\H

sgn(π)
∏
i∈H

bi,π(i) =

(
(−1)|H|

∏
i∈H

xi

) ∑
π∈Sk,Fix(π)=[k]\H

sgn(π)

=

(
(−1)|H|

∏
i∈H

xi

)
det(J|H| − I|H|)

= det(I|H| − J|H|)
∏
i∈H

xi

= (1− |H|)
∏
i∈H

xi,

where the last equality follows from Lemma 10.5.4. Therefore we can rewrite (10.5.2) as

det(Ik − TA) =
∑

H⊆[k]

(1− |H|)
∏
i∈H

xi

=

k∑
ℓ=0

(1− ℓ)eℓ = 1− e2 − 2e3 − 3e4 − · · · − (k − 1)ek,

as desired.

Now we are ready to prove Theorem 10.5.1.

Proof of Theorem 10.5.1. Let A = Jk − Ik. Then by Lemma 10.5.3 and Theorem 10.5.2,∑
n1,...,nk≥0

m(n1, . . . , nk)x
n1
1 · · ·xnk

k =
1

det(Ik − TA)
,

where T = (δi,jxi)
k
i,j=1. Then we obtain the theorem by Lemma 10.5.5.



Appendix A

Sign-reversing involutions

Definition A.0.1. A sign of a set X is a function sgn : X → {+1,−1}. A sign-reversing
involution on X is an involution ϕ : X → X such that

(1) sgn(x) = 1 for all x ∈ Fix(ϕ);

(2) sgn(ϕ(x)) = − sgn(x) for all x ∈ X \ Fix(ϕ),

where Fix(ϕ) is the set of fixed points of ϕ, i.e., Fix(ϕ) = {x ∈ X : ϕ(x) = x}.

It is easy to see that if ϕ is a sign-reversing involution on X, then∑
x∈X

sgn(X) = |Fix(ϕ)|. (A.0.1)

Example A.0.2. Let’s prove the following identity using sign-reversing involutions:

n∑
k=0

(−1)k
(
n

k

)
= 0. (A.0.2)

To this end we need to construct a set X and a sign-reversing involution ϕ on X such that (A.0.1)
becomes (A.0.2).

Let X be the set of all subsets of [n] := {1, . . . , n} and for A ∈ X, define sgn(A) = (−1)|A|.
Then it suffices to construct a sign-reversing involution on X with no fixed points. This can be
done by letting ϕ(A) = A∆{1}, where A∆B := (A ∪B) \ (A ∩B).

Example A.0.3. Recall that we proved the following identitiy, which was stated in (2.1.4), using
generating functions: ∑

k≥0

Pm(k)Pn(k)
ak

k!
=
eaan

n!
δn,m, (A.0.3)

where Pn(x) are the Charlier polynomials defined by

Pn(x) =

n∑
k=0

(
x

k

)
(−a)n−k

(n− k)!
.

We will prove this identity using sign-reversing involutions. To do this, we will consider (A.0.3)
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A

B C

∅

2 3

1 4

Figure A.1: The triple (A,B,C).

as a power series in a. Note that

∑
k≥0

Pm(k)Pn(k)
ak

k!
=
∑
k≥0

m∑
i=0

(
k

i

)
(−a)m−i

(m− i)!

n∑
j=0

(
k

j

)
(−a)n−j

(n− j)!

ak

k!

=
∑
k≥0

m∑
i=0

n∑
j=0

(
k

m− i

)
(−a)i

i!

(
k

n− j

)
(−a)j

j!

ak

k!

=
∑
N≥0

aN

N !

∑
i+j+k=N

(−1)i+j N !

i!j!k!

(
k

m− i

)(
k

n− j

)
,

where
(
r
s

)
= 0 if s < 0.

For a fixed N ,∑
i+j+k=N

(−1)i+j

(
N

i, j, k

)(
k

m− i

)(
k

n− j

)
=

∑
(A,B,C)∈X

(−1)|B\A|+|C\A|,

where X is the set of triples (A,B,C) such that A∪B∪C = {1, . . . , N}, |A| = k, |B| = m, |C| = n,
(B ∩ C) \A = ∅. Define sgn(A,B,C) = (−1)|B\A|+|C\A|. We will find a sign-reversing involution
on X toggling the smallest integer in regions 1 and 2 or in regions 3 and 4 in Figure A.1.

To be precise, for (A,B,C) ∈ X, define ϕ(A,B,C) as follows.

Case 1 The regions 1, 2, 3, 4 are all empty. In this case we define ϕ(A,B,C) = (A,B,C).

Case 2 At least one of the regions 1, 2, 3, 4 is nonempty. Let s be the smallest integer in (B∩C)\A.
If s is in region 1 (respectively 2, 3, 4), then move this integer to region 2 (respectively 1, 4,
3). Then let ϕ(A,B,C) = (A′, B′, C ′), where A′, B′, C ′ are the resulting sets.

By the construction, ϕ is a sign-reversing involution on X whose fixed points are the triples
(A,B,C) such that the regions 1, 2, 3, 4 are all empty, that is, B = C ⊆ A. If B = C ⊆ A, then
A = [N ], so the number of such triples (A,B,C) is

(
N
n

)
if m = n and 0 otherwise. Thus

∑
(A,B,C)∈X

(−1)|B\A|+|C\A| = |Fix(ϕ)| = δm,n

(
N

n

)
.

This implies ∑
k≥0

Pm(k)Pn(k)
ak

k!
= δm,n

∑
N≥0

aN

N !

(
N

n

)
=
eaan

n!
δn,m.
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